

Getting Started with Eclipse MicroProfile E-Book

Philip Riecks
Eclipse MicroProfile Version: 3.3

Table of Contents

Getting Started with Eclipse MicroProfile . 1

Introduction to Eclipse MicroProfile . 2

MicroProfile Config . 4

MicroProfile Metrics . 9

MicroProfile OpenAPI . 15

MicroProfile OpenTracing . 19

MicroProfile Fault Tolerance . 25

MicroProfile Rest Client . 31

MicroProfile Health . 36

MicroProfile JWT Auth. 40

Contexts and Dependency Injection (CDI). 44

Jakarta RESTful Web Services (JAX-RS) . 51

JSON Binding (JSON-B) . 56

JSON Processing (JSON-P) . 60

Integration with Jakarta EE. 66

Further resources on Eclipse MicroProfile . 67

Changelog notes . 68

Getting Started with Eclipse MicroProfile

This E-Book guides you trough each of the twelve MicroProfile specifications in
detail:

• MicroProfile Config

• MicroProfile Metrics

• MicroProfile OpenAPI

• MicroProfile OpenTracing

• MicroProfile Fault Tolerance

• MicroProfile Rest Client

• MicroProfile Health

• MicroProfile JWT Auth

• Contexts and Dependency Injection (CDI)

• Jakarta RESTful Web Services (JAX-RS)

• JSON Binding (JSON-B)

• JSON Processing (JSON-P)

After reading this book you’ll …

• Understand the concept and use of each MicroProfile specification

• Explore how to add missing parts (e.g. OpenAPI, JWT Auth, Resiliency, etc.)
to an existing Enterprise Java application

• Discover and implement best practices using MicroProfile

• Avoid vendor-lock when implementing applications using Eclipse
MicroProfile

• Discover why MicroProfile is a great spec for building cloud-native
applications

• Use the practical know-how in your projects

• Get hands-on screencasts for each specification with further explanations

This Book is for …

Java Developers that want to start using Eclipse MicroProfile or master dedicated
Eclipse MicroProfile specifications. No additional knowledge required except
basic experience with Java.

PS: If you find any typo or invalid example, please open an issue on GitHub.

Have fun reading this book & learning more about Eclipse MicroProfile,

Phil

Getting Started with Eclipse MicroProfile E-Book

Getting Started with Eclipse MicroProfile | 1

https://github.com/rieckpil/getting-started-with-eclipse-microprofile

Introduction to Eclipse MicroProfile

The Eclipse MicroProfile initiative was launched at Java One 2016 due to the slow
pace of Java EE back at the time. Eclipse MicroProfile is a set of standardized
specifications to add the missing parts to Enterprise Java to be cloud-ready: fault-
tolerance, tracing, health checks, etc.

With three release each year the MicroProfile project moves fast forward and
allows short feedback-cycles for changes to existing specifications or for a new
specification.

Available implementations

Check the homepage of the different vendors for the currently supported
MicroProfile version.

Application Servers

• Open Liberty

• Payara

• WildFly

• TomEE

Smaller runtimes

• KumuluzEE

• Helidon

• Quarkus

• Thorntail

• Hammock

• meecrowave

Technologies used for the examples in this books

• MicroProfile 3.3

• Open Liberty

• Java 11

• Maven 3.6

• WAD (Watch and Deploy) from Adam Bien (setup)

• JWTENIZR from Adam Bien

Getting Started with Eclipse MicroProfile E-Book

2 | Introduction to Eclipse MicroProfile

https://openliberty.io/
https://www.payara.fish/
https://wildfly.org/
http://tomee.apache.org/
https://ee.kumuluz.com/
https://helidon.io/#/
https://quarkus.io/
https://thorntail.io/
https://hammock-project.github.io/
https://openwebbeans.apache.org/meecrowave/
https://wad.sh/
https://rieckpil.de/review-improved-java-jakarta-ee-productivity-with-adam-biens-wad-watch-and-deploy/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
http://jwtenizr.sh/

Twelve-part video series

For each Eclipse MicroProfile specification I’ve recorded a screencast to provide
hands-on experience.

Get access to the twelve-part video series for Eclipse MicroProfile here.

Getting Started with Eclipse MicroProfile E-Book

Introduction to Eclipse MicroProfile | 3

https://www.youtube.com/watch?v=0h3QceSBBiY&list=PLFjB4VDnlT_3vXkrLkSBW7j6ygQRXBypA

MicroProfile Config

Injecting configuration properties like JDBC URLs, passwords, usernames or
hostnames from external sources is a common requirement for every
application.

Inspired by the twelve-factor app principles you should store configuration in the
environment (e.g. OS environment variables or config maps in Kubernetes).
These external configuration properties can then be replaced for your different
stages (dev/prod/test) with ease.

Using MicroProfile Config you can achieve this in a simple and extensible way.

Specification profile: MicroProfile Config

• Current version: 1.4 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Inject configuration properties from external sources
(like property files, environment or system variables)

Injecting configuration properties

At several parts of your application, you might want to inject configuration
properties to configure for example the base URL of a JAX-RS Client.

With MicroProfile Config you can inject a Config object using CDI and fetch a
specific property by its key:

public class BasicConfigurationInjection {

 @Inject
 private Config config;

 public void init(@Observes @Initialized(ApplicationScoped.class) Object init) {
 System.out.println(config.getValue("message", String.class));
 }

}

In addition, you can inject a property value to a member variable with the
@ConfigProperty annotation and also specify a default value:

public class BasicConfigurationInjection {

 @Inject
 @ConfigProperty(name = "message", defaultValue = "Hello World")
 private String message;

}

If you don’t specify a defaultValue, and the application can’t find a property

Getting Started with Eclipse MicroProfile E-Book

4 | MicroProfile Config

https://12factor.net
https://github.com/eclipse/microprofile-config
https://github.com/eclipse/microprofile-config/releases

value in the configured ConfigSources, your application will throw an error
during startup:

The BackedAnnotatedField @Inject @ConfigProperty private
de.rieckpil.blog.BasicConfigurationInjection.value InjectionPoint dependency was not
resolved. Error: java.util.NoSuchElementException: CWMCG0015E: The property
not.existing.value was not found in the configuration.
at com.ibm.ws.microprofile.config.impl.AbstractConfig.getValue(AbstractConfig.java:175)
at internal classes

For a more resilient behaviour, or if the config property is optional, you can wrap
the value with Java’s Optional<T> class and check its existence during runtime:

public class BasicConfigurationInjection {

 @Inject
 @ConfigProperty(name = "my.app.password")
 private Optional<String> password;

}

Furthermore you can wrap the property with a Provider<T> for a more
dynmaic injection. This ensure that each invocation of Provider.get()
resolves the latest value from the underlying Config and you are able to change
it during runtime.

public class BasicConfigurationInjection {

 @Inject
 @ConfigProperty(name = "my.app.timeout")
 private Provider<Long> timeout;

 public void init(@Observes @Initialized(ApplicationScoped.class) Object init) {
 System.out.println(timeout.get());
 }

}

For the key of the configuration property you might use the dot notation to
prevent conflicts and seperate domains: my.app.passwords.twitter.

Configuration sources

The default ConfigSources are the following:

• System property (default ordinal: 400): passed with -Dmessage=Hello to
the application

• Environment variables (default ordinal: 300): OS variables like export
MESSAGE=Hello

• Property file (default ordinal: 100): file META-INF/microprofile-
config.properties

Once the MicroProfile Config runtime finds a property in two places (e.g.
property file and environment variable), the value with the higher ordinal source

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Config | 5

is chosen.

These default configuration sources should cover most of the use cases and
support writing cloud-native applications. However, if you need any additional
custom ConfigSource, you can plug-in your own (e.g. fetch configurations from
a database or external service).

To provide you an example for a custom ConfigSource, I’m creating a static
source which serves just two properties. Therefore you just need to implement
the ConfigSource interface and its methods

public class CustomConfigSource implements ConfigSource {

 public static final String CUSTOM_PASSWORD = "CUSTOM_PASSWORD";
 public static final String MESSAGE = "Hello from custom ConfigSource";

 @Override
 public int getOrdinal() {
 return 500;
 }

 @Override
 public Map<String, String> getProperties() {
 Map<String, String> properties = new HashMap<>();
 properties.put("my.app.password", CUSTOM_PASSWORD);
 properties.put("message", MESSAGE);
 return properties;
 }

 @Override
 public String getValue(String key) {
 if (key.equalsIgnoreCase("my.app.password")) {
 return CUSTOM_PASSWORD;
 } else if (key.equalsIgnoreCase("message")) {
 return MESSAGE;
 }
 return null;
 }

 @Override
 public String getName() {
 return "randomConfigSource";
 }
}

To register this new ConfigSource you can either bootstrap a custom Config
object with this source:

Config config = ConfigProviderResolver
.instance()
.getBuilder()
.addDefaultSources()
.withSources(new CustomConfigSource())
.addDiscoveredConverters()
.build();

or add the fully-qualified name of the class of the configuration source to the
org.eclipse.microprofile.config.spi.ConfigSource file in
/src/main/resources/META-INF/services:

Getting Started with Eclipse MicroProfile E-Book

6 | MicroProfile Config

de.rieckpil.blog.CustomConfigSource

Using the file approach, the custom source is now part of the ConfigSources
by default.

Configuration converters

Internally the mechanism for MicroProfile Config is purely String-based. Type-
safety is achieved with Converter classes. The specification provides default
Converter for converting the configuration property into the known Java types:
Integer, Long, Float, Boolean, Byte, Short, Character, Double and their
primitive counterparts. Furthermore, you can also define a config value with the
type java.lang.Class. All these built-in converters have the priority of 1.

In addition, there are built-in providers for converting properties into Arrays,
Lists, Optional<T> and Provider<T>. If the default Converter doesn’t match
your requirements and you want e.g. to convert a property into a domain object,
you can plug-in a custom Converter<T>. For example, I’ll convert a config
property into a Token instance:

public class Token {

 private String name;
 private String payload;

 public Token(String name, String payload) {
 this.name = name;
 this.payload = payload;
 }

 // getter & setter
}

The custom converter needs to implement the Converter<Token> interface.
The converter method accepts a raw string value and returns the custom
domain object, in this case, an instance of Token:

public class CustomConfigConverter implements Converter<Token> {

 @Override
 public Token convert(String value) {
 String[] chunks = value.split(",");
 Token result = new Token(chunks[0], chunks[1]);
 return result;
 }
}

To register this converter you can either build your own Config instance and add
the converter manually:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Config | 7

int PRIORITY = 100;

Config config = ConfigProviderResolver
.instance()
.getBuilder()
.addDefaultSources()
.addDiscoveredConverters()
.withConverter(Token.class, PRIORITY, new CustomConfigConverter())
.build();

or you can add the fully-qualified name of the class of the converter to the
org.eclipse.microprofile.config.spi.Converter file in
/src/main/resources/META-INF/services:

de.rieckpil.blog.CustomConfigConverter

Once your converter is registered, you can start using it:

my.app.token=TOKEN_1337, SUPER_SECRET_VALUE

public class BasicConfigurationInjection {

 @Inject
 @ConfigProperty(name = "my.app.token")
 private Token token;

}

» For more hands-one experience with Eclipse MicroProfile Config, watch the
corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

8 | MicroProfile Config

https://youtu.be/0h3QceSBBiY

MicroProfile Metrics

Ensuring a stable operation of your application in production requires
monitoring. Without monitoring, you have no insights about the internal state
and health of your system and have to work with a black-box.

MicroProfile Metrics gives you the ability to not only monitor pre-defined metrics
like JVM statistics but also create custom metrics to monitor e.g. key figures of
your business. These metrics are then exposed via HTTP and ready to visualize
on a dashboard and create appropriate alarms.

Specification profile: MicroProfile Metrics

• Current version: 2.3 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Add custom metrics (e.g. timer or counter) to your
application and expose them via HTTP

Default MicroProfile metrics defined in the specification

The specification defines one endpoint with three subresources to collect
metrics from a MicroProfile application:

• The endpoint to collect all available metrics: /metrics

• Base (pre-defined by the specification) metrics: /metrics/base

• Application metrics: /metrics/application (optional)

• Vendor-specific metrics: /metrics/vendor (optional)

So you can either use the main /metrics endpoint and get all available metrics
for your application or one of the sub-resources. The default media type for
these endpoints is text/plain using the OpenMetrics format.

You are also able to get them as JSON if you specify the Accept header in your
request as application/json. In the specification, you find a list of base
metrics every MicroProfile Metrics compliant application server has to offer.
These are mainly JVM, GC, memory, and CPU related metrics to monitor the
infrastructure. The following output is the required amount of base metrics:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Metrics | 9

https://github.com/eclipse/microprofile-metrics
https://github.com/eclipse/microprofile-metrics/releases

{
 "gc.total;name=scavenge":393,
 "gc.time;name=global":386,
 "cpu.systemLoadAverage":0.92,
 "thread.count":85,
 "classloader.loadedClasses.count":11795,
 "classloader.unloadedClasses.total":21,
 "jvm.uptime":985206,
 "memory.committedHeap":63111168,
 "thread.max.count":100,
 "cpu.availableProcessors":12,
 "classloader.loadedClasses.total":11816,
 "thread.daemon.count":82,
 "gc.time;name=scavenge":412,
 "gc.total;name=global":14,
 "memory.maxHeap":4182573056,
 "cpu.processCpuLoad":0.0017964831879557087,
 "memory.usedHeap":34319912
}

In addition, you are able to add metadata and tags to your metrics like in the
output above for gc.time where name=global is a tag. You can use these tags
to further separate a metric for multiple use cases.

Since Eclipse MicroProfile 3.3 there is now also a new (optional) base metric
REST.request. This tracks the total count of requests and the total elapsed
time spent at your JAX-RS endpoints. As this is an optional metric, it might not be
available in every implementation.

Create a custom metric with MicroProfile Metrics

There are two ways for defining a custom metric with MicroProfile Metrics: using
annotations or programmatically. The specification offers five different metric
types:

• Timer: sampling the time for e.g. a method call

• Counter: monotonically counting e.g. invocations of a method

• Gauges: sample the value of an object e.g. current size of JMS queue

• Meters: tracking the throughput of e.g. a JAX-RS endpoint

• Histogram: calculate the distribution of a value e.g. the variance of
incoming user agents

For simple use cases, you can make use of annotations and just add them to a
method you want to monitor. Each annotation offers attributes to configure tags
and metadata for the metric:

@Counted(name = "bookCommentClientInvocations",
 description = "Counting the invocations of the constructor",
 displayName = "bookCommentClientInvoke",
 tags = {"usecase=simple"})
public BookCommentClient() {
}

If your monitoring use case requires a more dynamic configuration, you can

Getting Started with Eclipse MicroProfile E-Book

10 | MicroProfile Metrics

programmatically create/update your metrics. For this, you just need to inject
the MetricRegistry to your class:

public class BookCommentClient {

 @Inject
 @RegistryType(type = MetricRegistry.Type.APPLICATION)
 private MetricRegistry metricRegistry;

 public String getBookCommentByBookId(String bookId) {
 Response response = this.bookCommentsWebTarget.path(bookId).request().get();
 this.metricRegistry.counter("bookCommentApiResponseCode"
 + response.getStatus()).inc();
 return response.readEntity(JsonObject.class).getString("body");
 }
}

Create a timer metric

If you want to track and sample the duration for a method call, you can make
use of timers. You can add them with the @Timed annotation or using the
MetricRegistry.

A good use case might be tracking the time for a call to an external service:

@Timed(name = "getBookCommentByBookIdDuration")
public String getBookCommentByBookId(String bookId) {
 Response response = this.bookCommentsWebTarget.path(bookId).request().get();
 return response.readEntity(JsonObject.class).getString("body");
}

While using the timer metric type you’ll also get a count of method invocations
and mean/max/min/percentile calculations out-of-the-box:

 "de.rieckpil.blog.BookCommentClient.getBookCommentByBookIdDuration": {
 "fiveMinRate": 0.000004243196464475842,
 "max": 3966817891,
 "count": 13,
 "p50": 737218798,
 "p95": 3966817891,
 "p98": 3966817891,
 "p75": 997698383,
 "p99": 3966817891,
 "min": 371079671,
 "fifteenMinRate": 0.005509550587308515,
 "meanRate": 0.003936521878196718,
 "mean": 1041488167.7031761,
 "p999": 3966817891,
 "oneMinRate": 1.1484886591525709e-24,
 "stddev": 971678361.3592016
}

Be aware that you get the result as nanoseconds if you request the JSON result
and for the OpenMetrics format, you get seconds:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Metrics | 11

getBookCommentByBookIdDuration_rate_per_second 0.003756880727820997
getBookCommentByBookIdDuration_one_min_rate_per_second 7.980095572816848E-26
getBookCommentByBookIdDuration_five_min_rate_per_second 2.4892551645230856E-6
getBookCommentByBookIdDuration_fifteen_min_rate_per_second 0.004612201440656351
getBookCommentByBookIdDuration_mean_seconds 1.0414881677031762
getBookCommentByBookIdDuration_max_seconds 3.9668178910000003
getBookCommentByBookIdDuration_min_seconds 0.371079671
getBookCommentByBookIdDuration_stddev_seconds 0.9716783613592016
getBookCommentByBookIdDuration_seconds_count 13
getBookCommentByBookIdDuration_seconds{quantile="0.5"} 0.737218798
getBookCommentByBookIdDuration_seconds{quantile="0.75"} 0.997698383
getBookCommentByBookIdDuration_seconds{quantile="0.95"} 3.9668178910000003
getBookCommentByBookIdDuration_seconds{quantile="0.98"} 3.9668178910000003
getBookCommentByBookIdDuration_seconds{quantile="0.99"} 3.9668178910000003
getBookCommentByBookIdDuration_seconds{quantile="0.999"} 3.9668178910000003

Create a simple timer

As you saw it in the chapter above, the @Timed annotation already calculates
throughput and percentile statistics. If you don’t need this amount of data to e.g.
reduce the bandwith, you can fallback on @SimplyTimed.

This annotation is similar to the already mentioned timer, but solely tracks how
long an invocation took to complete and does not prepare any statistics for you:

@SimplyTimed(name = "getBookCommentByBookIdDuration")
public String getBookCommentByBookId(String bookId) {
 Response response = this.bookCommentsWebTarget.path(bookId).request().get();
 return response.readEntity(JsonObject.class).getString("body");
}

Create a counter metric

The next metric type is the simplest one: a counter. With the counter, you can
track e.g. the number of invocations of a method:

@Counted
public String doFoo() {
 return "Duke";
}

In one of the previous MicroProfile Metrics versions, you were able to decrease
the counter and have a not monotonic counter. As this caused confusion with
the gauge metric type, the current specification version defines this metric type
as a monotonic counter which can only increase.

If you use the programmatic approach, you are also able to define the amount of
increase for the counter on each invocation:

public void checkoutItem(String item, Long amount) {
 this.metricRegistry.counter(item + "Count").inc(amount);
 // further business logic
}

Getting Started with Eclipse MicroProfile E-Book

12 | MicroProfile Metrics

Create a metered metric

The meter type is perfect if you want to measure the throughput of something
and get the one-, five- and fifteen-minute rates. As an example I’ll monitor the
throughput of a JAX-RS endpoint:

@GET
@Metered(name = "getBookCommentForLatestBookRequest",
 tags = {"spec=JAX-RS", "level=REST"})
@Produces(MediaType.TEXT_PLAIN)
public Response getBookCommentForLatestBookRequest() {
 String latestBookRequestId = bookRequestProcessor.getLatestBookRequestId();
 return Response.ok(this.bookCommentClient.getBookCommentByBookId(latestBookRequestId)
).build();
}

After several invocations, the result looks like the following:

"de.rieckpil.blog.BookResource.getBookCommentForLatestBookRequest": {
"oneMinRate;level=REST;spec=JAX-RS": 1.1363013189791909e-24,
"fiveMinRate;level=REST;spec=JAX-RS": 0.0000042408326224725166,
"meanRate;level=REST;spec=JAX-RS": 0.003936520624021342,
"fifteenMinRate;level=REST;spec=JAX-RS": 0.0055092085268208186,
"count;level=REST;spec=JAX-RS": 13
}

Depending on your implementation provider of MicroProfile Metrics, tracking
time and invocations for JAX-RS endpoints might be redundant, as there is now
the optional base metric REST.request.

Create a gauge metric

To monitor a value which can increase and decrease over time, you should use
the gauge metric type. Imagine you want to visualize the current disk size or the
remaining messages to process in a queue:

@Gauge(unit = "amount")
public Long remainingBookRequestsToProcess() {
 // monitor e.g. current size of a JMS queue
 return ThreadLocalRandom.current().nextLong(0, 1_000_000);
}

The unit attribute of the annotation is required and has to be explicitly
configured. There is a MetricUnits class which you can use for common units
like seconds or megabytes.

In contrast to all other metrics, the @Gauge annotation can only be used in
combination with a single instance (e.g. @ApplicationScoped) as otherwise, it
would be not clear which instance represents the actual value.

There is a @ConcurrentGauge if you need to count parallel invocations. The
outcome is the current value of the gauge, which might increase or decrease
over time:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Metrics | 13

TYPE application_..._remainingBookRequestsToProcess_amount
application_..._remainingBookRequestsToProcess_amount 990120

// invocation of /metrics 5 minutes later

TYPE application_..._remainingBookRequestsToProcess_amount
application_..._remainingBookRequestsToProcess_amount 11003

» For more hands-one experience with Eclipse MicroProfile Metrics, watch the
corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

14 | MicroProfile Metrics

https://www.youtube.com/watch?v=jI6DoNYVd-U

MicroProfile OpenAPI

Exposing REST endpoints usually requires documentation for your clients. This
documentation usually includes the following: accepted media types, HTTP
method, path variables, query parameters, and the request and response
schema.

With the OpenAPI v3 specification we have a standard way to document APIs.
You can generate this kind of API documentation from your JAX-RS classes
using MicroProfile OpenAPI out-of-the-box.

In addition, you can customize the result with additional metadata like detailed
description, error codes and their reasons, and further information about the
used security mechanism.

Specification profile: MicroProfile OpenAPI

• Current version: 1.1 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Provide a unified Java API for the OpenAPI v3 specification
to expose API documentation

Customize your API documentation with MicroProfile

OpenAPI

Without any additional annotation or configuration, you get your API
documentation with MicroProfile OpenAPI out-of-the-box. Therefore your JAX-
RS classes are scanned for your @Produces, @Consumes, @Path, @GET etc.
annotations to extract the required information for the documentation. If you
have external clients accessing your endpoints, you usually add further
metadata for them to understand what each endpoint is about.

Fortunately, the MicroProfile OpenAPI specification defines a bunch of
annotations you can use to customize the API documentation. The following
example shows a part of the available annotation you can use to add further
information:

@GET
@Operation(summary = "Get all books", description = "Returns all available books of the
book store XYZ")
@APIResponse(responseCode = "404", description = "No books found")
@APIResponse(responseCode = "418", description = "I'm a teapot")
@APIResponse(responseCode = "500", description = "Server unavailable")
@Tag(name = "BETA", description = "This API is currently in beta state")
@Produces(MediaType.APPLICATION_JSON)
public Response getAllBooks() {
System.out.println("Get all books...");
 return Response.ok(new Book("MicroProfile", "Duke", 1L)).build();
}

Getting Started with Eclipse MicroProfile E-Book

MicroProfile OpenAPI | 15

https://github.com/eclipse/microprofile-open-api
https://download.eclipse.org/microprofile/microprofile-open-api-1.1/microprofile-openapi-spec.pdf
https://github.com/eclipse/microprofile-open-api/blob/master/spec/src/main/asciidoc/microprofile-openapi-spec.adoc

In this example, I’m adding a summary and description to the endpoint to tell the
client what this endpoint is about. Furthermore, you can specify the different
response codes this endpoint returns and give them a description if they are
somehow different from the HTTP spec.

Another important part of your API documentation is the request and response
body schema. With JSON as the current de-facto standard format for exchanging
data, you and need to know the expected and accepted formats.

The same is true for the response as your client needs information about the
contract of the API to further process the result. This can be achieved with an
additional MicroProfile OpenAPI annotation:

@GET
@APIResponse(description = "Book",
 content = @Content(mediaType = "application/json",
 schema = @Schema(implementation = Book.class)))
@Path("/{id}")
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Response getBookById(@PathParam("id") Long id) {
 return Response.ok(new Book("MicroProfile", "Duke", 1L)).build();
}

Within the @APIResponse annotation we can reference the response object with
the schema attribute. This can point to your data transfer object class.

Aforementioned Java class can then also have further annotations to specify
which field is required and what are example values:

@Schema(name = "Book", description = "POJO that represents a book.")
public class Book {

 @Schema(required = true, example = "MicroProfile")
 private String title;

 @Schema(required = true, example = "Duke")
 private String author;

 @Schema(required = true, readOnly = true, example = "1")
 private Long id;

}

Access the created documentation

The MicroProfile OpenAPI specification defines a pre-defined endpoint to access
the documentation: /openapi:

Getting Started with Eclipse MicroProfile E-Book

16 | MicroProfile OpenAPI

info:
 title: Deployed APIs
 version: 1.0.0
servers:
 - url: http://localhost:9080
 - url: https://localhost:9443
tags:
 - name: BETA
 description: This API is currently in beta state
paths:
 /resources/books/{id}:
 get:
 operationId: getBookById
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: integer
 format: int64
 responses:
 default:
 description: Book
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Book'

This endpoint returns your generated API documentation in the OpenAPI v3
specification format as text/plain.

Moreover, if you are using Open Liberty you’ll get a nice-looking user interface
for your API documentation. You can access it at
http://localhost:9080/openapi/ui/.

This looks similar to the Swagger UI and offers your client a way to explore your
API and also trigger requests to your endpoints via this user interface:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile OpenAPI | 17

http://localhost:9080/openapi/ui/

» For more hands-one experience with Eclipse MicroProfile OpenAPI, watch the
corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

18 | MicroProfile OpenAPI

https://www.youtube.com/watch?v=Rn7T26UW_H8

MicroProfile OpenTracing

Tracing method calls in a monolith to identify slow parts is simple. Everything is
happening in one application (context) and you can easily add metrics to gather
information about e.g. the elapsed time for fetching data from the database.

Once you have a microservice environment with service-to-service
communication, tracing needs more effort. If a business operation requires your
service to call other services (which might then also call others) to gather data,
identifying the source of a bottleneck is hard. Over the past years, several
vendors evolved to tackle this issue of distributed tracing (e.g. Jaeger, Zipkin etc.).

As the different solutions did not rely on a single, standard mechanism for trace
description and propagation, a vendor-neutral standard for distributed tracing
was due: OpenTracing. With Eclipse MicroProfile we get a dedicated specification
to make use of this standard: MicroProfile OpenTracing.

Specification profile: MicroProfile OpenTracing

• Current version: 1.3 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Provide distributed tracing for your JAX-RS application using
the OpenTracing standard

Basics about distributed tracing

Once the flow of a request touches multiple service boundaries, you need to
somehow correlate each incoming call with the same business flow. To
accomplish this with distributed tracing, each service is instrumented to log
messages with a correlation id that may have been propagated from an
upstream service.

These messages are then collected in a storage system and aggregated as they
share the same correlation id. A so-called trace represents the full journey of a
request containing multiple spans. A span contains a single operation within the
request with both start and end-time information.

The distributed tracing systems (e.g. Jager or Zipkin) then usually provide a visual
timeline representation for a given trace with its spans.

Enabling distributed tracing with MicroProfile

OpenTracing

The MicroProfile OpenTracing specification does not address the problem of
defining, implementing or configuring the underlying distributed tracing system.
It assumes an environment where all services use a common OpenTracing
implementation.

Getting Started with Eclipse MicroProfile E-Book

MicroProfile OpenTracing | 19

https://opentracing.io
https://github.com/eclipse/microprofile-opentracing
https://github.com/eclipse/microprofile-opentracing/releases/download/1.3/microprofile-opentracing-spec-1.3.pdf

The MicroProfile specification defines two operation modes:

• Without instrumentation of application code (distributed tracing is enabled
for JAX-RS applications by default)

• With explicit code instrumentation (using the @Traced annotation)

So once a request arrives at a JAX-RS endpoint, the Tracer instance extracts the
SpanContext (if given) from the inbound request and starts a new span. If there
is no SpanContext yet, e.g. the request is coming from a frontend application,
the MicroProfile application has to create one.

Every outgoing request (with either the JAX-RS Client or the MicroProfile Rest
Client) then needs to contain the SpanContext and propagate it downstream.
Tracing for the JAX-RS Client might need to be explicitly enabled (depending on
the implementation), for the MicroProfile Rest Client it is globally enabled by
default.

Besides the no instrumentation mode, you can add the @Traced annotation to a
class or method to explicitly start a new span at the beginning of a method.

Sample application setup for MicroProfile OpenTracing

To provide you an example, I’m using the following two services to simulate a
microservice architecture setup: book-store and book-store-client.

Both are MicroProfile applications and have no further dependencies. The book-
store-client has one public endpoint to retrieve books together with their price:

@Path("books")
public class BookResource {

 @Inject
 private BookProvider bookProvider;

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response getBooks() {
 return Response.ok(bookProvider.getBooksFromBookStore()).build();
 }

}

For gathering information about the book and its price, the book-store-client
communicates with the book-store:

Getting Started with Eclipse MicroProfile E-Book

20 | MicroProfile OpenTracing

@RequestScoped
public class BookProvider {

 @Inject
 private PriceCalculator priceCalculator;

 private WebTarget bookStoreTarget;

 @PostConstruct
 public void setup() {
 Client client = ClientBuilder
 .newBuilder()
 .connectTimeout(2, TimeUnit.SECONDS)
 .readTimeout(2, TimeUnit.SECONDS)
 .build();

 this.bookStoreTarget = client.target("http://book-store:9080/resources/books");
 }

 public JsonArray getBooksFromBookStore() {

 JsonArray books = this.bookStoreTarget
 .request()
 .get()
 .readEntity(JsonArray.class);

 List<JsonObject> result = new ArrayList();

 for (JsonObject book : books.getValuesAs(JsonValue::asJsonObject)) {
 result.add(Json.createObjectBuilder()
 .add("title", book.getString("title"))
 .add("price", priceCalculator.getPriceForBook(book.getInt("id")))
 .build());
 }

 return result
 .stream()
 .collect(JsonCollectors.toJsonArray());
 }
}

So there will be at least on outgoing call to fetch all available books and for each
book and additional request to get the price of the book:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile OpenTracing | 21

@RequestScoped
public class PriceCalculator {

 private WebTarget bookStorePriceTarget;
 private Double discount = 1.5;

 @PostConstruct
 public void setUp() {
 Client client = ClientBuilder
 .newBuilder()
 .connectTimeout(2, TimeUnit.SECONDS)
 .readTimeout(2, TimeUnit.SECONDS)
 .build();

 this.bookStorePriceTarget = client.target("http://book-
store:9080/resources/prices");
 }

 public Double getPriceForBook(int id) {
 Double bookPrice = this.bookStorePriceTarget
 .path(String.valueOf(id))
 .request()
 .get()
 .readEntity(Double.class);
 return Math.round((bookPrice - discount) * 100.0) / 100.0;
 }

}

On the book-store side, when fetching the prices, there is a random
Thread.sleep(), so we can later see different traces. Without further
instrumentations on both sides, we are ready for distributed tracing.

We could add additional @Traced annotations to the involved methods, to
create a span for each method call and narrow down the tracing.

Using the Zipkin implementation on Open Liberty

For this example, I’m using Open Liberty to deploy both applications. With Open
Liberty we have to add a feature for the OpenTracing implementation to the
server and configure it in server.xml:

FROM open-liberty:kernel-java11
COPY --chown=1001:0 target/microprofile-open-tracing-server.war /config/dropins/
COPY --chown=1001:0 server.xml /config/
COPY --chown=1001:0 extension /opt/ol/wlp/usr/extension

Getting Started with Eclipse MicroProfile E-Book

22 | MicroProfile OpenTracing

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <featureManager>
 <feature>microProfile-3.3</feature>
 <feature>usr:opentracingZipkin-0.31</feature>
 </featureManager>

 <opentracingZipkin host="zipkin" port="9411"/>

 <mpMetrics authentication="false"/>

 <ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" trustStoreRef="jdkTrustStore
"/>
 <keyStore id="jdkTrustStore" location="${java.home}/lib/security/cacerts" password=
"changeit"/>

 <httpEndpoint id="defaultHttpEndpoint" httpPort="9080" httpsPort="9443" />
</server>

The OpenTracing Zipkin implementation is provided by IBM and can be
downloaded at the following tutorial.

For the book-store DNS resolution, you saw in the previous code snippets and to
start Zipkin as the distributed tracing system, I’m using docker-compose:

services:
 book-store-client:
 build: book-store-client/
 ports:
 - "9080:9080"
 - "9443:9443"
 links:
 - zipkin
 - book-store
 book-store:
 build: book-store/
 links:
 - zipkin
 zipkin:
 image: openzipkin/zipkin
 ports:
 - "9411:9411"

Once both services and Zipkin is running, you can visit
http://localhost:9080/resources/books to fetch all available books from the book-
store-client application.

You can now hit this endpoint several times and then switch to
http://localhost:9411/zipkin/ and query for all available traces:

Once you click on a specific trace, you’ll get a timeline to see what operation took
the most time:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile OpenTracing | 23

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_dist_tracing.html
http://localhost:9080/resources/books
http://localhost:9411/zipkin/

» For more hands-one experience with Eclipse MicroProfile Open Tracing, watch
the corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

24 | MicroProfile OpenTracing

https://www.youtube.com/watch?v=b43XgElBxEo

MicroProfile Fault Tolerance

With the current trend to build distributed-systems, it is increasingly important
to build fault-tolerant services. Fault tolerance is about using different strategies
to handle failures in a distributed system.

Moreover, the services should be resilient and be able to operate further if a
failure occurs in an external service and not cascade the failure and bring the
system down. There is a set of common patterns to achieve fault tolerance
within your system. These patterns are all available within the MicroProfile Fault
Tolerance specification.

This example covers all available interceptor bindings as defined in the
specification:

• Fallback

• Timeout

• Retry

• CircuitBreaker

• Asynchronous

• Bulkhead

Specification profile: MicroProfile Fault Tolerance

• Current version: 2.1 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Provide a set of strategies to build resilient and fault-
tolerant services

Provide a fallback method

First, let’s cover the @Fallback interceptor binding of the MicroProfile Fault
Tolerance specification. With this annotation, you can provide a fallback behavior
of your method in case of an exception.

Assume your service fetches data from other microservices and the call might
fail due to network issues or downtime of the target. In case your service could
recover from the failure and you can provide meaningful fallback behavior for
your domain, the @Fallback annotation saves you.

A good example might be the checkout process of your webshop where you rely
on a third-party service for handling e.g. credit card payments. If this service fails,
you might fall back to a default payment provider and recover gracefully from
the failure.

For a simple example, I’ll demonstrate it with a JAX-RS client request to a

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Fault Tolerance | 25

https://github.com/eclipse/microprofile-fault-tolerance
https://github.com/eclipse/microprofile-fault-tolerance/releases

placeholder REST API and provide a fallback method:

@Fallback(fallbackMethod = "getDefaultPost")
public JsonObject getPostById(Long id) {
 return this.webTarget
 .path(String.valueOf(id))
 .request()
 .accept(MediaType.APPLICATION_JSON)
 .get(JsonObject.class);
}

public JsonObject getDefaultPost(Long id) {
 return Json.createObjectBuilder()
 .add("comment", "Lorem ipsum")
 .add("postId", id)
 .build();
}

With the @Fallback annotation you can specify the method name of the
fallback method which must share the same response type and method
arguments as the annotated method. In addition, you can also specify a
dedicated class to handle the fallback.

This class is required to implement the FallbackHandler<T> interface where T
is the response type of the targeted method:

@Fallback(PlaceHolderApiFallback.class)
public JsonObject getPostById(Long id) {
 return this.webTarget
 .path(String.valueOf(id))
 .request()
 .accept(MediaType.APPLICATION_JSON)
 .get(JsonObject.class);
}

public class PlaceHolderApiFallback implements FallbackHandler<JsonObject> {

 @Override
 public JsonObject handle(ExecutionContext context) {
 return Json.createObjectBuilder()
 .add("comment", "Lorem ipsum")
 .add("postId", Long.valueOf(context.getParameters()[0].toString()))
 .build();
 }
}

As you’ll see it in the upcoming chapters, the @Fallback annotation can be used
in combination with other MicroProfile Fault Tolerance interceptor bindings.

Furthermore, you can instruct the fallback annotation to apply only when a
specific exception is thrown. You can also include different exceptions from not
triggering the fallback behaviour:

@Fallback(value = PlaceHolderApiFallback.class,
 applyOn = {MyCustomException.class, MySevereException.class},
 skipOn = NumberFormatException.class)

By default the fallback occurs on every exception extending Throwable and

Getting Started with Eclipse MicroProfile E-Book

26 | MicroProfile Fault Tolerance

does not skip on any exception.

Add timeouts to limit the duration of a method

execution

For some operations in your system, you might have a strict response time
target. If you make use of the JAX-RS client or the client of MicroProfile Rest
Client you can specify read and connect timeouts to avoid long-running
requests.

But what about use cases where you can’t declare timeouts easily? The
MicroProfile Fault Tolerance specification defines the @Timeout annotation for
such problems. With this interceptor binding, you can specify the maximum
duration of a method. If the computation time within the method exceeds the
limit, a TimeoutException is thrown.

@Timeout(4000)
@Fallback(fallbackMethod = "getFallbackData")
public String getDataFromLongRunningTask() throws InterruptedException {
 Thread.sleep(4500);
 return "duke";
}

The default unit is milliseconds, but you can configure a different ChronoUnit:

@Timeout(value = 4, unit = ChronoUnit.SECONDS)
@Fallback(fallbackMethod = "getFallbackData")
public String getDataFromLongRunningTask() throws InterruptedException {
 Thread.sleep(4500);
 return "duke";
}

Define retry policies for method calls

A valid fallback behavior for an external system call might be just to retry it. With
the @Retry annotation, we can achieve such a behavior. Directly retrying to
execute the request might not always be the best solution.

Similarily you want to add delay for the next retry and maybe add some
randomness. We can configure such a requirement with the @Retry annotation:

@Retry(maxDuration = 5000, maxRetries = 3, delay = 500, jitter = 200)
@Fallback(fallbackMethod = "getFallbackData")
public String accessFlakyService() {

 System.out.println("Trying to access flaky service at " + LocalTime.now());

 if (ThreadLocalRandom.current().nextLong(1000) < 50) {
 return "flaky duke";
 } else {
 throw new RuntimeException("Flaky service not accessible");
 }
}

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Fault Tolerance | 27

https://rieckpil.de/whatis-eclipse-microprofile-rest-client/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
https://rieckpil.de/whatis-eclipse-microprofile-rest-client/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

In this example, we would try to execute the method three times with a delay of
500 milliseconds and 200 milliseconds of randomness (called jitter).

The effective delay is the following: [delay - jitter, delay + jitter] (in our example
300 to 700 milliseconds).

Furthermore, endless retrying might also be counter-productive. That’s why we
can specify the maxDuration which is quite similar to the @Timeout annotation
above. If the whole retrying takes more than 5 seconds, it will fail with a
TimeoutException.

Similar to the @Fallback annotation, we can specify the type of exceptions to
trigger and not trigger a retry:

@Retry(maxRetries = 3,
 retryOn = {RuntimeException.class},
 abortOn = {NumberFormatException.class})

Add a Circuit Breaker to fail fast

Once an external system you call is down or returning 503 as it is currently
unavailable to process further requests, you might not want to access it for a
given timeframe again.

This might help the other system to recover and your methods can fail fast as
you already know the expected response from requests in the past. For this
scenario, the Circuit Breaker pattern comes into place.

The Circuit Breaker offers a way to fail fast by directly failing the method
execution to prevent further overloading of the target system and indefinite wait
or timeouts. With MicroProfile Fault Tolerance we have an annotation to achieve
this with ease: @CircuitBreaker

There are three different states a Circuit Breaker can have: closed, opened, half-
open.

In the closed state, the operation is executed as expected. If a failure occurs
while e.g. calling an external service, the Circuit Breaker records such an event. If
a particular threshold of failures is met, it will switch to the open state. Once the
Circuit Breaker enters the open state, further calls will fail immediately.

After a given delay the circuit enters the half-open state. Within the half-open
state, trial executions will happen. Once such a trial execution fails, the circuit
transitions to the open state again.

When a predefined number of these trial executions succeed, the circuit enters
the original closed state. Let’s have a look at the following example:

Getting Started with Eclipse MicroProfile E-Book

28 | MicroProfile Fault Tolerance

https://martinfowler.com/bliki/CircuitBreaker.html

@CircuitBreaker(successThreshold = 10, requestVolumeThreshold = 5, failureRatio = 0.5,
delay = 500)
@Fallback(fallbackMethod = "getFallbackData")
public String getRandomData() {
 if (ThreadLocalRandom.current().nextLong(1000) < 300) {
 return "random duke";
 } else {
 throw new RuntimeException("Random data not available");
 }
}

In the example above I define a Circuit Breaker which enters the open state once
50% (failureRatio=0.5) of five consecutive executions
(requestVolumeThreshold=5) fail. After a delay of 500 milliseconds in the
open state, the circuit transitions to half-open. Once ten trial executions
(successThreshold=10) in the half-open state succeed, the circuit will be back
in the closed state.

This annotation also allows defining the exception types to skip and to fail on:

@CircuitBreaker(successThreshold = 10, requestVolumeThreshold = 5, delay = 500,
 skipOn = {NumberFormatException.class},
 failOn = {RuntimeException.class})

Execute a method asynchronously

Some use cases of your system might not require synchronous and in-order
execution of different tasks. For instance, you can fetch data for a customer
(purchased orders, contact information, invoices) from different services in
parallel.

The MicroProfile Fault Tolerance specification offers a convenient way for
achieving such asynchronous method executions: @Asynchronous:

@Asynchronous
public Future<String> getConcurrentServiceData(String name) {
 System.out.println(name + " is accessing the concurrent service");
 return CompletableFuture.completedFuture("concurrent duke");
}

With this annotation, the execution will be on a separate thread and the method
has to return either a Future or a CompletionStage

Apply Bulkheads to limit the number of concurrent calls

The Bulkhead pattern is a way of isolating failures in your system while the rest
can still function.

It’s named after the sectioned parts (bulkheads) of a ship. If one bulkhead of a
ship is damaged and filled with water, the other bulkheads aren’t affected, which
prevents the ship from sinking.

Imagine a scenario where all your threads are occupied for a request to a (slow-

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Fault Tolerance | 29

responding) external system and your application can’t process other tasks. To
prevent such a scenario, we can apply the @Bulkhead annotation and
limit concurrent calls:

@Bulkhead(5)
@Asynchronous
public Future<String> getConcurrentServiceData(String name) throws InterruptedException {
 Thread.sleep(1000);
 System.out.println(name + " is accessing the concurrent service");
 return CompletableFuture.completedFuture("concurrent duke");
}

In this example, only five concurrent calls can enter this method and further
have to wait. If this annotation is used together with @Asynchronous, as in the
example above, it means thread isolation.

In addition and only for asynchronous methods we can specify the length of the
waiting queue with the attribute waitingTaksQueue.

For non-async methods, the specification defines to utilize semaphores for
isolation.

MicroProfile Fault Tolerance integration with

MicroProfile Config

Above all, the MicroProfile Fault Tolerance specification provides tight integration
with the config spec.

You can configure every attribute of the different interceptor bindings with an
external config source like the microprofile-config.properties file. The
pattern for external configuration is the following:

`<classname>/<methodname>/<annotation>/<parameter>`

de.rieckpil.blog.RandomDataProvider/accessFlakyService/Retry/maxRetries=10
de.rieckpil.blog.RandomDataProvider/accessFlakyService/Retry/delay=300
de.rieckpil.blog.RandomDataProvider/accessFlakyService/Retry/maxDuration=5000

» For more hands-one experience with Eclipse MicroProfile Fault Tolerance,
watch the corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

30 | MicroProfile Fault Tolerance

https://rieckpil.de/whatis-eclipse-microprofile-config/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
https://www.youtube.com/watch?v=_O4EjWHF0TQ

MicroProfile Rest Client

In a distributed system your services usually communicate via HTTP and expose
REST APIs. External clients or other services in your system consume these
endpoints on a regular basis to e.g. fetch data from a different part of the
domain. If you are using Java EE you can utilize the JAX-RS WebTarget and
Client for this kind of communication.

With the MicroProfile Rest Client specification, you’ll get a more advanced and
simpler way of creating these RESTful clients. You just declare interfaces and use
a more declarative approach (like you might already know it from the Feign
library).

Specification profile: MicroProfile Rest Client

• Current version: 1.4 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Provide a type-safe approach to invoke RESTful services
over HTTP.

Defining the RESTful client

For defining the Rest Client you just need a Java interface and model the remote
REST API using JAX-RS annotations:

public interface JSONPlaceholderClient {

 @GET
 @Path("/posts")
 JsonArray getAllPosts();

 @POST
 @Path("/posts")
 Response createPost(JsonObject post);

}

You can specify the response type with a specific POJO (JSON-B will then try to
deserialize the HTTP response body) or use the generic Response class of JAX-
RS.

Furthermore, you can indicate an asynchronous execution, if you use
CompletionStage<T> as the method return type:

@GET
@Path("/posts/{id}")
CompletionStage<JsonObject> getPostById(@PathParam("id") String id);

Path variables and query parameters for the remote endpoint can be specified
with @PathParam and @QueryParam:

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Rest Client | 31

https://github.com/OpenFeign/feign
https://github.com/eclipse/microprofile-rest-client
https://github.com/eclipse/microprofile-rest-client/releases

@GET
@Path("/posts")
JsonArray getAllPosts(@QueryParam("orderBy") String orderDirection);

@GET
@Path("/posts/{id}/comments")
JsonArray getCommentsForPostByPostId(@PathParam("id") String id);

You can define the media type of the request and the expected media type of
the response on either interface level or for each method separately:

@Consumes(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_JSON)
public interface JSONPlaceholderClient {

 @GET
 // overrides the JSON media type only for this method
 @Produces(MediaType.APPLICATION_XML)
 @Path("/posts/{id}")
 CompletionStage<JsonObject> getPostById(@PathParam("id") String id);

}

If you have to declare specific HTTP headers (e.g. for authentication), you can
pass them either to the method with @HeaderParam or define them with
@ClientHeaderParam (static value or refer to a method):

@ClientHeaderParam(name = "X-Application-Name", value = "MP-blog")
public interface JSONPlaceholderClient {

 @PUT
 @ClientHeaderParam(name = "Authorization", value = "{generateAuthHeader}")
 @Path("/posts/{id}")
 Response updatePostById(@PathParam("id") String id, JsonObject post,
 @HeaderParam("X-Request-Id") String requestIdHeader);

 default String generateAuthHeader() {
 return "Basic "+ new String(Base64
 .getEncoder().encode("duke:SECRET".getBytes()));
 }

}

Specifying multiple HTTP headers

If you want to generate multiple HTTP headers or propagate HTTP headers from
an incoming JAX-RS request (e.g. pass the Authorization header to a downstream
system), you can use the ClientHeadersFactory.

This interface specifies one method that returns the final HTTP headers for an
outgoing client call. The headers might still be manipulated by a filter or any
other mechanism before sending the client request.

While implementing this method you get two arguments passed to the update
method. First, yo get passed incoming headers if the Rest Client is used as part
of a JAX-RS request. These might be empty. Furthermore, you have access to the
HTTP headers you specified already at your interface while using e.g.

Getting Started with Eclipse MicroProfile E-Book

32 | MicroProfile Rest Client

@ClientHeaderParam:

public interface ClientHeadersFactory {
 MultivaluedMap<String, String> update(
 MultivaluedMap<String, String> incomingHeaders,
 MultivaluedMap<String, String> clientOutgoingHeaders);
}

Inside your implementation, you can now define logic for the outgoing HTTP
headers. As an example I’m merging the incoming headers with the client
outgoing headers and add three more headers manually:

@ApplicationScoped
public class GlobalClientHeaders implements ClientHeadersFactory {

 @Inject
 @ConfigProperty(name = "secrets.value")
 private String secretValue;

 @Override
 public MultivaluedMap<String, String> update(
 MultivaluedMap<String, String> incomingHeaders,
 MultivaluedMap<String, String> clientOutgoingHeaders) {

 System.out.println("--- Incoming headers of the JAX-RS environment");
 incomingHeaders.forEach((k, v) -> System.out.println(k + ":" + v));

 System.out.println("--- Specified outgoing headers of the Rest Client");
 clientOutgoingHeaders.forEach((k, v) -> System.out.println(k + ":" + v));

 MultivaluedMap<String, String> resultHeader = new MultivaluedHashMap();
 resultHeader.putAll(incomingHeaders);
 resultHeader.putAll(clientOutgoingHeaders);

 resultHeader.add("X-Secret-Header", secretValue);
 resultHeader.add("X-Global-Header", "duke");
 resultHeader.add("X-Special-Header", "MicroProfile");

 System.out.println("--- Header of the Rest Client after merging");
 resultHeader.forEach((k, v) -> System.out.println(k + ":" + v));

 return resultHeader;
 }
}

Besides the benefit of propagating HTTP headers of a JAX-RS request, you can
use @Inject here if your implementation is managed by CDI. This allows you to
inject secrets for example or any other CDI bean to calculate a header value.

Finally, you have to register your factory implementation using
@RegisterClientHeaders(NameOfFactoryImpl.class) on your Rest Client
interface.

@RegisterRestClient
@RegisterClientHeaders(GlobalClientHeaders.class)
public interface JSONPlaceholderClient {
}

You can get further information on using the ClientHeadersFactory interface
in the MicroProfile Rest Client 1.4 update video.

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Rest Client | 33

https://www.youtube.com/watch?v=5RHXy8N5Y7A

Using the client interface

Once you define your Rest Client interface you have two ways of using them.
First, you can make use of the programmatic approach using the
RestClientBuilder.

With this builder we can set the base URI, define timeouts and register JAX-RS
features/provider like ClientResponseFilter, MessageBodyReader,
ReaderInterceptor etc. :

JSONPlaceholderClient jsonApiClient = RestClientBuilder.newBuilder()
 .baseUri(new URI("https://jsonplaceholder.typicode.com"))
 .register(ResponseLoggingFilter.class)
 .connectTimeout(2, TimeUnit.SECONDS),
 .readTimeout(2, TimeUnit.SECONDS)
 .build(JSONPlaceholderClient.class);

jsonApiClient.getPostById("1").thenAccept(System.out::println);

In addition to this, we can use CDI to inject the Rest Client. To register the
interface as a CDI managed bean during runtime, the interface requires the
@RegisterRestClient annotation:

@RegisterRestClient
@RegisterProvider(ResponseLoggingFilter.class)
public interface JSONPlaceholderClient {

}

With the @RegisterProvider you can register further JAX-RS provider and
features as you’ve seen it in the programmatic approach. If you don’t specify any
scope for the interface, the @Dependent scope will be used by default. With this
scope, your Rest Client bean is bound (dependent) to the lifecycle of the injector
class.

You can now use it as any other CDI bean and inject it to your classes. Make sure
to add the CDI qualifier @RestClient to the injection point:

@ApplicationScoped
public class PostService {

 @Inject
 @RestClient
 JSONPlaceholderClient jsonPlaceholderClient;

}

Further configuration for the Rest Client

If you use the CDI approach, you can make use of MicroProfile Config to further
configure the Rest Client. You can specify the following properties with
MicroProfile Config:

Getting Started with Eclipse MicroProfile E-Book

34 | MicroProfile Rest Client

https://rieckpil.de/whatis-eclipse-microprofile-config/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

• Base URL (…/mp-rest/url)

• Base URI (…/mp-rest/uri)

• The CDI scope of the client as a fully qualified class name (…/mp-
rest/scope)

• JAX-RS provider as a comma-separated list of fully qualified class names
(../mp-rest/providers)

• The priority of a registered provider (…/mp-
rest/providers/com.acme.MyProvider/priority)

• Connect and read timeouts (…/mp-rest/connectTimeout and …/mp-
rest/readTimeout)

You can specify these properties for each client individually as you have to
specify the fully qualified class name of the Rest Client for each property:

de.rieckpil.blog.JSONPlaceholderClient/mp-rest/url=https://jsonplaceholder.typicode.com
de.rieckpil.blog.JSONPlaceholderClient/mp-rest/connectTimeout=3000
de.rieckpil.blog.JSONPlaceholderClient/mp-rest/readTimeout=3000

» For more hands-one experience with Eclipse MicroProfile Rest Client, watch the
corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Rest Client | 35

https://www.youtube.com/watch?v=HJWxI_T3FKo

MicroProfile Health

Once your application is deployed to production you want to ensure it’s up- and
running . To determine the health and status of your application you can use
monitoring based on different metrics, but this requires further knowledge and
takes time.

Usually, you just want a quick answer to the question: Is my application up? The
same is true if your application is running e.g. in a Kubernetes cluster, where the
cluster regularly performs health probes to terminate unhealthy pods.

With MicroProfile Health you can write both readiness and liveness checks and
expose them via an HTTP endpoint with ease.

Specification profile: MicroProfile Health

• Current version: 2.2 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Add liveness and readiness checks to determine the
application’s health

Determine the application’s health with MicroProfile

Health

With MicroProfile Health you get three new endpoints to determine both the
readiness and liveness of your application:

• /health/ready: Returns the result of all readiness checks and determines
whether or not your application can process requests

• /health/live: Returns the result of all liveness checks and determines
whether or not your application is up- and running

• /health : As in previous versions of MicroProfile Health there was no
distinction between readiness and liveness, this is active for downwards
compatibility. This endpoint returns the result of both health check types.

To determine your readiness and liveness you can have multiple checks. The
overall status is constructed with a logical AND of all your checks of that specific
type (liveness or readiness). If e.g. on liveness check fails, the overall liveness
status is DOWN and the HTTP status is 503:

Getting Started with Eclipse MicroProfile E-Book

36 | MicroProfile Health

https://rieckpil.de/whatis-eclipse-microprofile-metrics/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health/releases

$ curl -v http://localhost:9080/health/live

< HTTP/1.1 503 Service Unavailable
< X-Powered-By: Servlet/4.0
< Content-Type: application/json; charset=UTF-8
< Content-Language: en-US

{"checks":[...],"status":"DOWN"}

In case of an overall UP status, you’ll receive the HTTP status 200:

$ curl -v http://localhost:9080/health/ready

< HTTP/1.1 200 OK
< X-Powered-By: Servlet/4.0
< Content-Type: application/json; charset=UTF-8
< Content-Language: en-US

{"checks":[...],"status":"UP"}

Create a readiness check

To create a readiness check you have to implement the HealthCheck interface
and add @Readiness to your class:

@Readiness
public class ReadinessCheck implements HealthCheck {

 @Override
 public HealthCheckResponse call() {
 return HealthCheckResponse.builder()
 .name("readiness")
 .up()
 .build();
 }
}

As you can add multiple checks, you need to give every check a dedicated name.
In general, all your readiness checks should determine whether your application
is ready to accept traffic or not.

Therefore a quick response is preferable. If your application is about exposing
and accepting data using REST endpoints and does not rely on other services to
work, the readiness check above should be good enough as it returns 200 once
the JAX-RS runtime is up- and running:

{
 "checks":[
 {
 "data":{

 },
 "name":"readiness",
 "status":"UP"
 }
],
 "status":"UP"
}

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Health | 37

Furthermore, once /health/ready returns 200, the readiness is identified and
from now on the /health/live is used and no more readiness checks are
required.

Create liveness checks

Creating liveness checks is as simple as creating readiness checks. The only
difference is the @Livness annotation at class level:

@Liveness
public class DiskSizeCheck implements HealthCheck {

 @Override
 public HealthCheckResponse call() {

 File file = new File("/");
 long freeSpace = file.getFreeSpace() / 1024 / 1024;

 return responseBuilder = HealthCheckResponse.builder()
 .name("disk")
 .withData("remainingSpace", freeSpace)
 .state(freeSpace > 100)
 .build();

}

In this example, I’m checking for free disk space as a service might rely on
storage to persist e.g. files.

With the .withData() method of the HealthCheckResponseBuilder you can
add further metadata to your response. In addition, you can also combine the
@Readiness and @Liveness annotation and reuse a health check class for both
checks:

@Readiness
@Liveness
public class MultipleHealthCheck implements HealthCheck {

 @Override
 public HealthCheckResponse call() {
 return HealthCheckResponse
 .builder()
 .name("generalCheck")
 .withData("foo", "bar")
 .withData("uptime", 42)
 .withData("isReady", true)
 .up()
 .build();
 }
}

This check now appears for /health/ready and /health/live:

Getting Started with Eclipse MicroProfile E-Book

38 | MicroProfile Health

{
 "checks":[
 {
 "data":{
 "remainingSpace":447522
 },
 "name":"disk",
 "status":"UP"
 },
 {
 "data":{

 },
 "name":"liveness",
 "status":"UP"
 },
 {
 "data":{
 "foo":"bar",
 "isReady":true,
 "uptime":42
 },
 "name":"generalCheck",
 "status":"UP"
 }
],
 "status":"UP"
}

Other possible liveness checks might be: checking for active JDBC connections,
connections to queues, CPU usage, or custom metrics (with the help of
MicroProfile Metrics).

If you want to see how to utilize this specification to deploy an Eclipse
MicroProfile/Jakarta EE application to Kubernetes, consider watching the
following video.

» For more hands-one experience with Eclipse MicroProfile Health, watch the
corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

MicroProfile Health | 39

https://rieckpil.de/whatis-eclipse-microprofile-metrics/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
https://www.youtube.com/watch?v=v5uv6cI0aAc
https://www.youtube.com/watch?v=nq_gdPUTx5c

MicroProfile JWT Auth

In today’s microservice architectures security is usually based on the following
protocols: OAuth2, OpenID Connect, and SAML. These main security protocols
use security tokens to propagate the security state from client to server. This
stateless approach is usually achieved by passing a JWT token alongside every
client request.

For convenient use of this kind of token-based authentication, the MicroProfile
JWT Auth evolved. The specification ensures, that the security token is extracted
from the request, validated and a security context is created out of the extracted
information.

Specification profile: MicroProfile JWT Auth

• Current version: 1.1 in MicroProfile 3.3

• GitHub repository

• Latest specification document

• Basic use case: Provide JWT token-based authentication for your
application

Securing a JAX-RS application

First, we have to instruct our JAX-RS application, that we’ll use the JWTs for
authentication and authorization. You can configure this with the @LoginConfig
annotation:

@ApplicationPath("resources")
@LoginConfig(authMethod = "MP-JWT")
public class JAXRSConfiguration extends Application {
}

Once an incoming request has a valid JWT within the HTTP Bearer header, the
groups in the JWT are mapped to roles.

We can now limit the access for a resource to specific roles and achieve
authorization with the Common Security Annotations (JSR-250) (
@RolesAllowed, @PermitAll, @DenyAll):

@GET
@RolesAllowed("admin")
public Response getBook() {

 JsonObject secretBook = Json.createObjectBuilder()
 .add("title", "secret")
 .add("author", "duke")
 .build();

 return Response.ok(secretBook).build();
}

Getting Started with Eclipse MicroProfile E-Book

40 | MicroProfile JWT Auth

https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth/releases/download/1.1/microprofile-jwt-auth-spec-1.1.pdf
https://jcp.org/en/jsr/detail?id=250

Furthermore, we can inject the actual JWT token (alongside the Principal) with
CDI and inject any claim of the JWT in addition:

@Path("books")
@RequestScoped
@Produces(MediaType.APPLICATION_JSON)
public class BookResource {

 @Inject
 private Principal principal;

 @Inject
 private JsonWebToken jsonWebToken;

 @Inject
 @Claim("administrator_id")
 private JsonNumber administrator_id;

 @GET
 @RolesAllowed("admin")
 public Response getBook() {

 System.out.println("Secret book for " + principal.getName()
 + " with roles " + jsonWebToken.getGroups());
 System.out.println("Administrator level: "
 + jsonWebToken.getClaim("administrator_level").toString());
 System.out.println("Administrator id: " + administrator_id);

 JsonObject secretBook = Json.createObjectBuilder()
 .add("title", "secret")
 .add("author", "duke")
 .build();

 return Response.ok(secretBook).build();
 }

}

In this example, I’m injecting the claim administrator_id and access the claim
administrator_level via the JWT token. These are not part of the standard
JWT claims but you can add any additional metadata in your token.

Always make sure to only inject the JWT token and the claims to
@RequestScoped CDI beans, as you’ll get a DeploymentExcpetion otherwise:

javax.enterprise.inject.spi.DeploymentException: CWWKS5603E: The claim cannot be injected
into the [BackedAnnotatedField] @Inject @Claim private
de.rieckpil.blog.BookResource.administrator_id injection point for the ApplicationScoped
or SessionScoped scopes.
at
com.ibm.ws.security.mp.jwt.cdi.JwtCDIExtension.processInjectionTarget(JwtCDIExtension.java
:92)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

HINT: Depending on the application server you’ll deploy this example, you might
have to first declare the available roles with @DeclareRoles({"admin",
"chief", "duke"}).

Getting Started with Eclipse MicroProfile E-Book

MicroProfile JWT Auth | 41

Required configuration for MicroProfile JWT Auth

Achieving validation of the JWT signature requires the public key. Since
MicroProfile JWT Auth 1.1, we can configure this with MicroProfile Config
(previously it was vendor-specific). The JWT Auth specification allows the
following public key formats:

• PKCS#8 (Public Key Cryptography Standards #8 PEM)

• JWK (JSON Web Key)

• JWKS (JSON Web Key Set)

• JWK Base64 URL encoded

• JWKS Base64 URL encoded

For this example, I’m using the PKCS#8 format and specify the path of the .pem
file containing the public key in the microprofile-config.properties file:

mp.jwt.verify.publickey.location=/META-INF/publicKey.pem
mp.jwt.verify.issuer=rieckpil

The configuration of the issuer is also required and has to match the iss claim
in the JWT. A valid publicKey.pem file might look like the following:

-----BEGIN RSA PUBLIC KEY-----
YOUR_PUBLIC_KEY
-----END RSA PUBLIC KEY-----

Using JWTEnizer to create tokens for testing

Usually, the JWT is issued by an identity provider (e.g. Keycloak). For quick testing,
we can use the JWTenizer tool from Adam Bien.

This provides a simple way to create valid JWT token and generates the
corresponding public and private key. Once you downloaded the
jwtenizer.jar you can run it for the first time with the following command:

java -jar jwtenizer.jar

This will now create a jwt-token.json file in the folder you executed the
command above. We can adjust this .json file to our needs and model a sample
JWT token:

Getting Started with Eclipse MicroProfile E-Book

42 | MicroProfile JWT Auth

https://rieckpil.de/whatis-eclipse-microprofile-config/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
http://jwtenizr.sh/

{
 "iss":"rieckpil",
 "jti":"42",
 "sub":"duke",
 "upn":"duke",
 "groups":[
 "chief",
 "hacker",
 "admin"
],
 "administrator_id":42,
 "administrator_level":"HIGH"
}

Once you adjusted the raw jwt-token.json, you can run java -jar
jwtenizer.jar again and this second run will now pick the existing .json file
for creating the JWT.

Alongside the JWT token, the tool generates a microprofile-
config.properties file, from which we can copy the public key and paste it to
our publicKey.pem file. Furthermore the shell output of running
jwtenizer.jar contains a cURL command we can use to hit our resources:

curl -i -H'Authorization: Bearer GENERATED_JWT' http://localhost:9080/resources/books

With a valid Bearer header you should get the following response from the
backend:

HTTP/1.1 200 OK
X-Powered-By: Servlet/4.0
Content-Type: application/json
Date: Fri, 06 Sep 2019 03:24:16 GMT
Content-Language: en-US
Content-Length: 34

{"title":"secret","author":"duke"}

You can now adjust the jwt-token.json again and remove the admin group
and generate a new JWT. With this generated token you shouldn’t be able to get
a response from the backend and receive 403 Forbidden, as you are
authenticated but don’t have the correct role.

For further instructions on how to use this tool, have a look at the README on
GitHub or the following video of Adam Bien.

» For more hands-one experience with Eclipse MicroProfile JWT Auth, watch the
corresponding video course section of the Getting Started with Eclipse
MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

MicroProfile JWT Auth | 43

https://github.com/rieckpil/getting-started-with-eclipse-microprofile/tree/master/microprofile-jwt-auth
https://www.youtube.com/embed/twXqCoYQ16c?rel=0
https://www.youtube.com/watch?v=8O3D2tNx1uM

Contexts and Dependency Injection (CDI)

Dependency Injection (DI) is one of the central techniques in today’s applications
and targets Separation of concerns. Not only makes this testing easier, but you
are also not in charge to know how to construct the instance of a requested
class.

With Java/Jakarta EE we have a specification which (besides other topics) covers
this: Contexts and Dependency Injection (short CDI). CDI is also part of the
Eclipse MicroProfile project and many other Java/Jakarta EE specifications
already use it internally or plan to use it. Please note that I won’t cover every
aspect of this spec and rather concentrate on the most important parts. For
more in-depth knowledge, have a look at the following book.

Specification profile: Contexts and Dependency Injection

(CDI)

• Current version: 2.0 in Java/Jakarta EE 8 and MicroProfile 3.3

• GitHub repository

• Specification homepage

• Basic use case: provide a typesafe dependency injection mechanism

Basic dependency injection with CDI

The main use case for CDI is to provide a typesafe dependency injection
mechanism. To make a Java class injectable and managed by the CDI container,
you just need a default no-args constructor or a constructor with a @Inject
annotation.

If you use no further annotations, you have to tell CDI to scan your project for all
available beans. You can achieve this which a beans.xml file inside
src/main/resources/webapp/WEB-INF using the bean-discovery-mode:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 bean-discovery-mode="all">
</beans>

Using this setup, the following BookService can inject an instance of the
IsbnValidator class:

public class IsbnValidator {
 public boolean validateIsbn(String isbn) {
 return isbn.replace("-", "").length() < 13);
 }
}

Getting Started with Eclipse MicroProfile E-Book

44 | Contexts and Dependency Injection (CDI)

https://en.wikipedia.org/wiki/Separation_of_concerns
https://rieckpil.de/review-pro-cdi-2-in-java-ee-8-book/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
https://github.com/eclipse-ee4j/cdi
http://www.cdi-spec.org/

public class BookService {

 @Inject
 private IsbnValidator isbnValidator;

 // work with the instance
}

You can inject beans via either field-, setter-, constructor-injection or request a
bean manually from the CDI runtime:

public void storeBook(String bookName, String isbn) {
 if (CDI.current().select(IsbnValidator.class).get().validateIsbn(isbn)) {
 logger.info("Store book with name: " + bookName);
 }
}

Once CDI manages a bean, the instances have a well-defined lifecycle and are
bound to a scope. You can interact with the lifecycle of a bean while using e.g.
@PostConstruct or @PreDestroy. The default scope, if you don’t specify any
(like in the example above), is the pseudo-scope @Dependent.

With this scope, an instance of your bean is bound to the scope of the bean it
gets injected to and won’t be shared. However, you can specify the scope of your
bean using the available scopes in CDI:

• @RequestScoped - bound to an HTTP request

• @SessionScoped - bound to the HTTP session of a user

• @ApplicationScoped - like a Singleton, one instance per application

• @ConversationScoped - bound to a conversation context e.g. wizard-like
web app

If you need a more dynamic approach for creating a bean that is managed by
CDI you can use the @Produces annotation. This gives you access to the
InjectionPoint which contains metadata about the class who requested an
instance:

public class LoggerProducer {

 @Produces
 public Logger produceLogger(InjectionPoint injectionPoint) {
 return Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());
 }
}

Using qualifiers to specify beans

In the previous chapter, we looked at the simplest scenario where we just have
one possible bean to inject. Imagine the following scenario where have multiple
implementations of an interface:

Getting Started with Eclipse MicroProfile E-Book

Contexts and Dependency Injection (CDI) | 45

public interface BookDistributor {
 void distributeBook(String bookName);
}

public class BookPlaneDistributor implements BookDistributor {

 @Override
 public void distributeBook(String bookName) {
 System.out.println("Distributing book by plane");
 }
}

public class BookShipDistributor implements BookDistributor {

 @Override
 public void distributeBook(String bookName) {
 System.out.println("Distributing book by ship");
 }
}

If we now request a bean of the type BookDistributor, which instance do we get?
The BookPlaneDistributor or an instance of BookShipDistributor?

public class BookStorage {

 @Inject // this will fail
 private BookDistributor bookDistributor;

}

well, we get nothing but an exception, as the CDI runtime doesn’t know which
implementation to inject:

WELD-001409: Ambiguous dependencies for type BookDistributor with qualifiers @Default
at injection point \[BackedAnnotatedField\] @Inject private
de.rieckpil.blog.qualifiers.BookStorage.bookDistributors
at de.rieckpil.blog.qualifiers.BookStorage.bookDistributors(BookStorage.java:0)
Possible dependencies:
- Managed Bean \[class de.rieckpil.blog.qualifiers.BookShipDistributor\] with qualifiers
\[@Any @Default\],
- Managed Bean \[class de.rieckpil.blog.qualifiers.BookPlaneDistributor\] with qualifiers
\[@Any @Default\]

The stack trace contains an important hint on how to fix such a scenario. If we
don’t further qualify a bean our beans have the default qualifiers @Any and
@Default. In the scenario above the BookStorage class requests for a
BookDistributor and also does not specify anything else, meaning it will get
the @Default bean.

As there are two beans with this default behavior, dependency injection is not
possible (without further adjustments) here. To fix the error above, we have to
introduce qualifiers and further specify which concrete bean we want. A qualifier
is a Java annotation including @Qualifier:

Getting Started with Eclipse MicroProfile E-Book

46 | Contexts and Dependency Injection (CDI)

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface PlaneDistributor {
}

Once we have this annotation, we can use it both for the implementation and at
the injection point:

@PlaneDistributor
public class BookPlaneDistributor implements BookDistributor {

 @Override
 public void distributeBook(String bookName) {
 System.out.println("Distributing book by plane");
 }
}

@Inject
@PlaneDistributor
private BookDistributor bookPlaneDistributor;

and now have a proper injection of our requested bean. Above all, you can also
always request for all instances matching a Java type using the Instance<T>
wrapper class:

public class BookStorage {

 @Inject
 private Instance<BookDistributor> bookDistributors;

 public void distributeBookToCustomer(String bookName) {
 bookDistributors.forEach(b -> b.distributeBook(bookName));
 }
}

Enrich functionality with decorators & interceptors

With CDI we have two mechanisms to enrich/extend the functionality of a class
without changing the implementation: Decorators and Interceptors. Decorators
allow a type-safe way to decorate your actual implementation. Given the
following example of an Account interface and one implementation:

public interface Account {
 Double getBalance();
 void withdrawMoney(Double amount);
}

Getting Started with Eclipse MicroProfile E-Book

Contexts and Dependency Injection (CDI) | 47

public class CustomerAccount implements Account {

 @Override
 public Double getBalance() {
 return 42.0;
 }

 @Override
 public void withdrawMoney(Double amount) {
 System.out.println("Withdraw money from customer: " + amount);
 }
}

We can now write a decorator to make special checks if the amount of money to
withdraw meets a threshold:

@Decorator
public abstract class LargeWithdrawDecorator implements Account {

 @Inject
 @Delegate
 private Account account;

 @Override
 public void withdrawMoney(Double amount) {
 if (amount >= 100.0) {
 System.out.println("A large amount of money gets withdrawn!!!");
 // e.g. do further checks
 }
 account.withdrawMoney(amount);
 }
}

With interceptors, we get a more generic approach and don’t have the same
method signature as the intercepted class, rather an InvocationContext. This
offers more flexibility as we can reuse our interceptor on multiple
classes/methods. A lot of cross-cutting logic in Java/Jakarta EE like transactions
and security is actually achieved with interceptors.

For an example on how to write interceptors, have a look at one of my previous
blog posts. Both decorators and interceptors are inactive by default. To activate
them, you either have to specify them in your beans.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
bean-discovery-mode="all">
 <decorators>
 <class>de.rieckpil.blog.decorators.LargeWithdrawDecorator</class>
 </decorators>
</beans>

or using the @Priority annotation and specify the priority value:

Getting Started with Eclipse MicroProfile E-Book

48 | Contexts and Dependency Injection (CDI)

https://rieckpil.de/howto-intercept-method-calls-using-cdi-interceptors/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

@Decorator
@Priority(100)
public abstract class LargeWithdrawDecorator implements Account {
}

Decouple components with CDI events

Last but not least, the CDI specification provides a sophisticated event
notification model. You can use this to decouple your components and use the
Observer pattern to notify all listeners once a new event is available.

The event notification in CDI is available both in a synchronous and
asynchronous way. The payload of the event can be any Java class and you can
use qualifiers to further specialize an event. Firing an event is as simple as the
following:

public class BookRequestPublisher {

 @Inject
 private Event<BookRequest> bookRequestEvent;

 public void publishNewRequest() {
 this.bookRequestEvent.fire(new BookRequest("MicroProfile 3.0", 1));
 }
}

Observing such an event requires the @Observes annotation on the receiver-
side:

public class BookRequestListener {
 public void onBookRequest(@Observes BookRequest bookRequest) {
 System.out.println("New book request incoming: " + bookRequest.toString());
 }
}

Using the asynchronous way, you receive a CompletionStage<T> as a result
and can add further processing steps or handle errors:

Getting Started with Eclipse MicroProfile E-Book

Contexts and Dependency Injection (CDI) | 49

public class BookRequestPublisher {

 @Inject
 private Event<BookRequest> bookRequestEvent;

 public void publishNewRequest() {

 this.bookRequestEvent
 .fireAsync(new BookRequest("MicroProfile 3.0", 1))
 .handle((request, error) -> {
 if (error == null) {
 System.out.println("Successfully fired async event");
 return request;
 } else {
 System.out.println("Error occured during async event");
 return null;
 }
 })
 .thenAccept(r -> System.out.println(r));
 }

}

Listening to async events requires the @ObservesAsync annotation instead of
@Observes :

public void onBookRequestAsync(@ObservesAsync BookRequest bookRequest) {
 System.out.println("New book request incoming async: " + bookRequest.toString());
}

» For more hands-one experience with CDI, watch the corresponding video
course section of the Getting Started with Eclipse MicroProfile series.

If you are looking for resources to learn more advanced CDI concepts in-depth,
have a look at this book.

Getting Started with Eclipse MicroProfile E-Book

50 | Contexts and Dependency Injection (CDI)

https://youtu.be/Q8jHRDu9Fbo
https://rieckpil.de/review-pro-cdi-2-in-java-ee-8-book/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

Jakarta RESTful Web Services (JAX-RS)

The REST architectural pattern is widely adopted when it comes to creating web
services. The term was first introduced by Roy Fielding in his dissertation and
describes a way for clients to query and manipulate the resources of a server.

With Jakarta RESTful Web Services (JAX-RS), formerly known as Java API for
RESTful Web Services, we have a standardized approach to create such web
services. This specification is also part of the MicroProfile project since day one.
Please note that I won’t cover every aspect of this spec (as it is quite large) and
rather concentrate on the most important parts.

Specification profile: Jakarta RESTful Web Services (JAX-

RS)

• Current version: 2.1 in Java/Jakarta EE 8 and MicroProfile 3.3

• GitHub repository

• Specification homepage

• Basic use case: develop web services following the Representational State
Transfer (REST) pattern

Bootstrap a JAX-RS application

Bootstrapping a JAX-RS application is simple. The main mechanism is to provide
a subclass of javax.ws.rs.core.Application on your classpath:

@ApplicationPath("resources")
public class JAXRSApplication extends Application {
}

With @ApplicationPath you can specify the path prefix all of your REST
endpoints should share. This might be /api or /resources. Furthermore, you
can override the methods of Application and register for example all your
resources classes, providers and features manually (getClasses() method),
but you don’t have to.

Create REST endpoints

Most of the time you’ll use JAX-RS to expose resources of your server on a given
path and for a specific HTTP method. The specification provides an annotation
to map each HTTP method (GET, PUT, POST, DELETE …) to a Java method. Using
the @Path annotation you can specify which path to map and also specify path
variables:

Getting Started with Eclipse MicroProfile E-Book

Jakarta RESTful Web Services (JAX-RS) | 51

https://github.com/eclipse-ee4j/jaxrs-api
https://projects.eclipse.org/projects/ee4j.jaxrs

@Path("books")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class BookResource {

 @GET
 @Path("/{id}")
 public Response getBookById(@PathParam("id") Long id,
 @QueryParam("title") @DefaultValue("") String title) {
 // ...
 }

 @POST
 public Response getBookById(Book bookToStore, @Context UriInfo uriInfo) {
 // ...
 }

 @DELETE
 @Path("/{id}")
 public Response deleteBook(@PathParam("id") Long id,
 @HeaderParam("User-Agent") String userAgent) {
 // ...
 }

}

In the example above you see that the whole class is mapped to the path
/books with different HTTP methods. @PathParam is used to get the value of a
path variable and @QueryParam for retrieving query parameters of a URL (e.g.
?order=DESC).

In addition, you can inject further classes into your JAX-RS method and get
access e.g. to the HttpServlet, UriInfo and HTTP headers of the request
(@HeaderParam("nameOfHeader")).

Next, JAX-RS offers annotations for content-negotiation: @Consumes and
@Produces. In the example above, I’m adding these annotations on class-level,
so all methods (which don’t specify their own @Produces/@Consumes) inherit
the rules to accept only JSON requests and produces only JSON responses.

In the case, your client sends a payload in the HTTP body (e.g. creating a new
book - @POST in the example above), you can map the payload to a Java POJO.
For JSON payloads, JSON-B is used in the background and for not default payload
types (e.g. binary protobuf payload to POJO) you have to register your own
MessageBodyReader and MessageBodyWriter.

The specification defines a standard set of entity providers, which are supported
out-of-the-box (e.g. String for text/plain, byte[] for /, File for /,
MultivaluedMap<String, String> for application/x-www-form-
urlencoded , etc.). Alongside synchronous and blocking REST endpoints, the
specification also supports asynchronous ones:

Getting Started with Eclipse MicroProfile E-Book

52 | Jakarta RESTful Web Services (JAX-RS)

https://rieckpil.de/whatis-json-binding-json-b/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

@GET
@Path("async")
public void getBooksAsync(@Suspended final AsyncResponse asyncResponse) {
 // do long-running task with e.g. @Asynchronous annotation
 // form MicroProfile Fault Tolerance or from EJB
 asyncResponse.resume(this.bookStore);
}

If you don’t specify any other lifecycle (e.g. with @Singleton from EJB or a CDI
scope) the JAX-RS runtime instantiates a new instance for each request for this
resource.

Access external resources

The JAX-RS specification also provides a convenient way to access external
resources (e.g. REST endpoints of other services) as a client. We can construct
such a client with the ClientBuilder from JAX-RS:

@PostConstruct
public void initClient() {
 ClientBuilder clientBuilder = ClientBuilder.newBuilder()
 .connectTimeout(5, TimeUnit.SECONDS)
 .readTimeout(5, TimeUnit.SECONDS)
 .register(UserAgentClientFilter.class)
 .register(ClientLoggingResponseFilter.class);

 this.client = clientBuilder.build();
}

@PreDestroy
public void tearDown() {
 this.client.close();
}

This ClientBuilder allows you to specify metadata like the connect and read
timeouts, but also register several features (like you’ll see in the next chapter).
Make sure to not construct a new Client for every request, as they are heavy-
weight objects:

Clients are heavy-weight objects that manage the client-side communication
infrastructure. Initialization as well as disposal of a {@code Client} instance
may be a rather expensive operation. It is therefore advised to construct
only a small number of {@code Client} instances in the application. Client
instances must be {@link #close() properly closed} before being disposed to
avoid leaking resources. Javadoc of the Client class

Once you have an instance of a Client, you can now specify the external
resources and create a WebTarget instance for each target you want to access:

WebTarget quotesApiTarget = client.target("https://quotes.rest").path("qod");

With this WebTarget instance you can now perform any HTTP operation, set
additional header/cookies, set the request body and specify the response type:

Getting Started with Eclipse MicroProfile E-Book

Jakarta RESTful Web Services (JAX-RS) | 53

JsonObject quoteApiResult = this.quotesApiTarget
 .request()
 .header("X-Foo", "bar")
 .accept(MediaType.APPLICATION_JSON)
 .get()
 .readEntity(JsonObject.class);

Furthermore, JAX-RS offer reactive support for requesting external resources
with .rx():

CompletionStage<JsonObject> rxQuoteApiResult = this.quotesApiTarget
 .request()
 .header("X-Foo", "bar")
 .accept(MediaType.APPLICATION_JSON)
 .rx()
 .get(JsonObject.class);

Intercept the request and response flow

There are various entry points to intercept the flow of a JAX-RS resource and
including client requests. To give you an idea of how the overall architecture
looks like, have a look at the following image:

@Provider
@PreMatching
public class HttpMethodModificationFilter implements ContainerRequestFilter {

 @Override
 public void filter(ContainerRequestContext requestContext) throws IOException {

 if(requestContext.getMethod().equalsIgnoreCase("DELETE")) {
 requestContext.setMethod("GET");
 }

 }
}

Next, you can add e.g. common headers to the response of your resource
method with a ContainerResponseFilter:

Getting Started with Eclipse MicroProfile E-Book

54 | Jakarta RESTful Web Services (JAX-RS)

@Priority(100)
@Provider
public class XPoweredByResponseHeaderFilter implements ContainerResponseFilter {

 @Override
 public void filter(ContainerRequestContext requestContext,
 ContainerResponseContext responseContext) throws IOException {
 responseContext.getHeaders().add("X-Powered-By", "MicroProfile");
 }
}

With @Priority you can set the order of your filter once you use multiple and
rely on execution in order. For the client-side, we can add a filter to first log all
HTTP headers of the incoming response with @ClientResponseFilter:

@Provider
public class ClientLoggingResponseFilter implements ClientResponseFilter {

 @Override
 public void filter(ClientRequestContext requestContext,
 ClientResponseContext responseContext) throws IOException {
 System.out.println("Response filter for JAX-RS Client");
 responseContext.getHeaders().forEach((k, v) -> System.out.println(k + ":" + v));
 }
}

» For more hands-one experience with JAX-RS, watch the corresponding video
course section of the Getting Started with Eclipse MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

Jakarta RESTful Web Services (JAX-RS) | 55

https://youtu.be/-TmKXm0k7UI

JSON Binding (JSON-B)

JSON is the current de-facto data format standard for exposing data via APIs. The
Java ecosystem offers a bunch of libraries to create JSON from Java objects and
vice-versa (GSON, Jackson, etc.).

With the release of Java EE 8 and the JSR-367, we now have a standardized
approach for this: JSON-B. With the transition of Java EE to the Eclipse
Foundation, this specification is now renamed to Jakarta JSON Binding (JSON-
B). In addition, this spec is also part of the Eclipse MicroProfile project.

Specification profile: JSON Binding (JSON-B)

• Current version: 1.0 in Java/Jakarta EE 8 and MicroProfile 3.3

• GitHub repository

• Specification homepage

• Basic use case: Convert Java objects from and to JSON

Map objects from and to JSON

The central use case for JSON-B is mapping Java objects to and from JSON
strings. To provide you an example, I’m using the following POJO:

public class Book {

 private String title;
 private LocalDate creationDate;
 private long pages;
 private boolean isPublished;
 private String author;
 private BigDecimal price;

 // constructors, getters & setters
}

Mapping Java objects and JSON messages requires an instance of the Jsonb. The
specification defines a builder to create such an object. This instance can then be
used for both mapping Java objects from and to JSON:

Book book = new Book("Java 11", LocalDate.now(), 1, false, "Duke", new BigDecimal(44.444)
);

Jsonb jsonb = JsonbBuilder.create();

String resultJson = jsonb.toJson(book);

Book serializedBook = jsonb.fromJson(resultJson, Book.class);

With no further configuration or adjustments, the JSON result contains all Java
member variables (ignoring null values) as attributes in camel case.
Furthermore, you can also map a collection of Java objects to and from JSON
arrays in a type-safe manner:

Getting Started with Eclipse MicroProfile E-Book

56 | JSON Binding (JSON-B)

https://github.com/eclipse-ee4j/jsonb-api
http://json-b.net/

List<Book> bookList = new ArrayList<>();
bookList.add(new Book("Java 11", LocalDate.now(), 100, true, "Duke", new BigDecimal(39.95
)));
bookList.add(new Book("Java 15", LocalDate.now().plus(365, ChronoUnit.DAYS), 110, false,
"Duke", new BigDecimal(50.50)));

Jsonb jsonb = JsonbBuilder.create();

String result = jsonb.toJson(bookList);

List<Book> serializedBookList = jsonb
 .fromJson(result, new ArrayList<Book>(){}.getClass().getGenericSuperclass());

Configure the mapping of attributes

Sometimes the default mapping strategy of JSON-B might not fit your
requirements and you want to e.g. customize the JSON attribute name or the
date/number format. The specification offers a set of annotations to override
the default mapping behavior, which can be applied to your Java POJO class.

With @JsonbProperty you can adjust the name of the JSON attribute name. If
you use this annotation on a field level, it will affect both serialization and
deserialization. On getter methods it affects only serialization and on setters
only deserialization back to Java objects:

@JsonbProperty("book-title")
private String title;

Next, you can use @JsonbTransient to avoid the serialization of a specific
attribute to JSON at all:

@JsonbTransient
private boolean isPublished;

If you plan to override the default behavior to not include null values to the JSON
message, @JsonbNillable offers a way to do this. This annotation can only be
used on class level and will affect all attributes:

@JsonbNillable
public class Book {
}

For those use cases where you just want one attribute to be serialized to null,
you can use @JsonbProperty(nillable=true) on fields/getters/setters. In
addition, you are able to adjust the format of dates and numbers with
@JsonbDateFormat and @JsonbNumberFormat and specify your custom
format:

Getting Started with Eclipse MicroProfile E-Book

JSON Binding (JSON-B) | 57

@JsonbDateFormat("dd.MM.yyyy")
private LocalDate creationDate;

@JsonbNumberFormat("#0.00")
private BigDecimal price;

Above all, if you don’t want JSON-B to use the default no-arg constructor to
deserialize JSON to Java objects, you can specify a custom constructor and use
the annotation @JsonbCreator:

public class Book {

 // ...

 @JsonbCreator
 public Book(@JsonbProperty("book-title") String title) {
 this.title = title;
 }

}

Make sure you use this annotation only once per class.

Define metadata for mapping JSON objects

Applying e.g. the @JsonbDateFormat to all your POJOs so they are all compliant
to your custom date format, might be cumbersome and error-prone.
Furthermore, if you use the annotations above to customize the mapping, you
are not able to provide multiple representations if different clients require their
own.

You can solve such requirements with a JsonbConfig instance and define
global metadata for the mapping. Together with this configuration class, you can
create a configured Jsonb instance and apply the mapping rules to all mappings
of this instance:

Book book = new Book("Java 11", LocalDate.now(), 1, false, null, new BigDecimal(50.50));

JsonbConfig config = new JsonbConfig()
 .withNullValues(false)
 .withFormatting(true)
 .withPropertyOrderStrategy(PropertyOrderStrategy.LEXICOGRAPHICAL)
 .withPropertyNamingStrategy(PropertyNamingStrategy.LOWER_CASE_WITH_UNDERSCORES)
 .withDateFormat("dd-MM-YYYY", Locale.GERMAN);

Jsonb jsonb = JsonbBuilder.create(config);

String jsonString = jsonb.toJson(book);

Using this JsonbConfig, you are also able to configure things you can’t with the
annotations of the previous chapter: pretty-printing, locale information, naming
strategies, ordering of attributes, encoding information, binary data strategies,
etc. Have a look at the official user guide for all configuration attributes.

Getting Started with Eclipse MicroProfile E-Book

58 | JSON Binding (JSON-B)

https://javaee.github.io/jsonb-spec/users-guide.html

Provide a custom JSON-B mapping strategy

If all of the above solutions don’t meet your requirements for mapping Java
objects to and from JSON, you can implement your own JsonAdpater and get
full access to serialization and deserialization:

public class BookAdapter implements JsonbAdapter<Book, JsonObject> {

 @Override
 public JsonObject adaptToJson(Book book) throws Exception {
 return Json.createObjectBuilder()
 .add("title", book.getTitle() + " - " + book.getAuthor())
 .add("creationDate", book.getCreationDate().toEpochDay())
 .add("pages", book.getPages())
 .add("price", book.getPrice().multiply(BigDecimal.valueOf(2l)))
 .build();
 }

 @Override
 public Book adaptFromJson(JsonObject jsonObject) throws Exception {
 Book book = new Book();
 book.setTitle(jsonObject.getString("title").split("-")\[0\].trim());
 book.setAuthor(jsonObject.getString("title").split("-")\[1\].trim());
 book.setPages(jsonObject.getInt("pages"));
 book.setPublished(false);
 book.setPrice(BigDecimal.valueOf(jsonObject.getJsonNumber("price").longValue()));
 book.setCreationDate(LocalDate.ofEpochDay(jsonObject.getInt("creationDate")));
 return book;
 }
}

With this adapter, you have full access to manage your JSON representation and
to the deserialization logic. In this example, I’m using both the title and author
for the final book title and concatenate both.

Keep in mind that with a custom adapter, your JSON-B annotations on your POJO
are overruled. To make use of this JsonAdapter, you have to register it using a
custom JsonbConfig:

JsonbConfig config = new JsonbConfig()
 .withAdapters(new BookAdapter());

Jsonb jsonb = JsonbBuilder.create(config);

String jsonString = jsonb.toJson(book);

Book serializedBook = jsonb.fromJson(jsonString, Book.class);

If you need more low-level access to the serialization and deserialization, have a
look at the JsonbSerializer and JsonbDeserializer interface (an example
can be found in the official user guide).

» For more hands-one experience with JSON-B, watch the corresponding video
course section of the Getting Started with Eclipse MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

JSON Binding (JSON-B) | 59

https://javaee.github.io/jsonb-spec/users-guide.html
https://youtu.be/3TbbivV2Epk

JSON Processing (JSON-P)

Besides binding and converting JSON from an to Java objects with JSON-B, the
Java EE specification (now Jakarta EE) offers a spec to process JSON data: JSON
Processing (JSON-P).

With this spec, you can easily create, write, read, stream, transform and query
JSON objects. This specification is also part of the Eclipse MicroProfile project
and provides a simple API to handle and further process JSON data structures as
you’ll see it in the following examples. === Specification profile: JSON Processing
(JSON-P)

• Current version: 1.1 in Java/Jakarta EE 8 and MicroProfile 3.3

• GitHub repository

• Specification homepage

• Basic use case: Process JSON messages (parse, generate, transform and
query)

Construct JSON objects using JSON-P

With JSON-P you can easily build JSON objects on-demand. You can create a
JsonObjectBuilder using the Json class and build the JSON object while
adding new attributes to the object:

JsonObject json = Json.createObjectBuilder()
 .add("name", "Duke")
 .add("age", 42)
 .add("skills",
 Json.createArrayBuilder()
 .add("Java SE").add("Java EE").build())
 .add("address",
 Json.createObjectBuilder()
 .add("street", "Mainstreet")
 .add("city", "Jakarta")
 .build())
 .build();

If you print this object, you already have a valid JSON and can return this e.g.
from a JAX-RS endpoint or use it as an HTTP request body:

{"name":"Duke","age":42,"skills":\["Java SE","Java
EE"\],"address":{"street":"Mainstreet","city":"Jakarta"}}

You are not limited to create JSON objects only, you can also request for a
JsonArrayBuilder and start constructing your JSON array:

JsonArray jsonArray = Json.createArrayBuilder()
 .add("foo")
 .add("bar")
 .add("duke")
 .build();

Getting Started with Eclipse MicroProfile E-Book

60 | JSON Processing (JSON-P)

https://rieckpil.de/whatis-json-binding-json-b/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
https://github.com/eclipse-ee4j/jsonp
https://eclipse-ee4j.github.io/jsonp/

Write JSON objects

Given a JSON object, you can also write it to a different source using JSON-P and
its JsonWriterFactory. As an example, I’m writing a JSON object to a File in
pretty-print:

private void prettyPrintJsonToFile(JsonObject json) throws IOException {
 Map<String,Boolean> config = new HashMap<>();
 config.put(JsonGenerator.PRETTY_PRINTING, true);

 JsonWriterFactory writerFactory = Json.createWriterFactory(config);
 try (OutputStream outputStream = new FileOutputStream(new File("/tmp/output.json"));
 JsonWriter jsonWriter = writerFactory.createWriter(outputStream)) {

 jsonWriter.write(json);
 }
}

The JsonWriterFactory accepts any Writer or OutputStream to instantiate
the JsonWriter:

private void prettyPrintJsonToConsole(JsonObject json) throws IOException {
 Map<String,Boolean> config = new HashMap<>();
 config.put(JsonGenerator.PRETTY_PRINTING, true);

 JsonWriterFactory writerFactory = Json.createWriterFactory(config);
 try (Writer stringWriter = new StringWriter();
 JsonWriter jsonWriter = writerFactory.createWriter(stringWriter)) {
 jsonWriter.write(json);
 System.out.println(stringWriter);
 }
}

Using the JSON object from the chapter above, the output on the console will
look like the following:

{
 "name": "Duke",
 "age": 42,
 "skills": [
 "Java SE",
 "Java EE"
],
 "address": {
 "street": "Mainstreet",
 "city": "Jakarta"
 }
}

Read JSON with JSON-P

The specification also provides a convenient way to read and parse JSON from a
given source (e.g. File or String). To create a JsonReader instance, you either
have to provide a InputStream or a Reader. As an example, I’m reading from
both a String and a File on the classpath:

Getting Started with Eclipse MicroProfile E-Book

JSON Processing (JSON-P) | 61

private void readFromString() {
 JsonReader jsonReader = Json.createReader(
 new StringReader("{\"name\":\"duke\",\"age\":42,\"skills\":\[\"Java SE\", \"Java EE
\"]}"));
 JsonObject jsonObject = jsonReader.readObject();
 System.out.println(jsonObject);
}

private void readFromFile() {
 JsonReader jsonReader = Json.createReader(this.getClass().getClassLoader()
 .getResourceAsStream("books.json"));
 JsonArray jsonArray = jsonReader.readArray();
 System.out.println(jsonArray);
}

If the JSON is not valid, the JsonReader throws a JsonParsingExcpetion
while parsing it and will give a hint about what is wrong e.g. Invalid
token=SQUARECLOSE at (line no=1, column no=54, offset=53).
Expected tokens are: [COLON].

Stream JSON data

For use cases where you have to process big JSON objects (which might not fit
into memory), you should have a look at the streaming options of JSON-P. The
specification says the following about its streaming capabilities:

Unlike the Object model this offers more generic access to JSON strings that
may change more often with attributes added or similar structural changes.
Streaming API is also the preferred method for very large JSON strings that
could take more memory reading them altogether through the Object
model API.

Streaming works for both parsing and generating JSON objects. To parse and
process a big JSON object, the spec provides the JsonParser:

Getting Started with Eclipse MicroProfile E-Book

62 | JSON Processing (JSON-P)

String jsonString =
"{\\"name\\":\\"duke\\",\\"isRetired\\":false,\\"age\\":42,\\"skills\\":\[\\"Java SE\\",
\\"Java EE\\"\]}";
try (JsonParser parser = Json.createParser(new StringReader(jsonString))) {
 while (parser.hasNext()) {
 final Event event = parser.next();
 switch (event) {
 case START_ARRAY:
 System.out.println("Start of array");
 break;
 case END_ARRAY:
 System.out.println("End of array");
 break;
 case KEY_NAME:
 System.out.println("Key found " + parser.getString());
 break;
 case VALUE_STRING:
 System.out.println("Value found " + parser.getString());
 break;
 case VALUE_NUMBER:
 System.out.println("Number found " + parser.getLong());
 break;
 case VALUE_TRUE:
 System.out.println(true);
 break;
 case VALUE_FALSE:
 System.out.println(false);
 break;
 }
 }
}

This offers rather low-level access to the JSON object and you can access all
Event objects (e.g. START_ARRAY, KEY_NAME, VALUE_STRING) while parsing. For
creating a JSON object in a streaming-fashion, you can use the JsonGenerator
class and write to any source using a Writer or OutputStream:

StringWriter stringWriter = new StringWriter();

try (JsonGenerator jsonGenerator = Json.createGenerator(stringWriter)) {
 jsonGenerator.writeStartArray()
 .writeStartObject()
 .write("name", "duke")
 .writeEnd()
 .writeStartObject()
 .write("name", "jakarta")
 .writeEnd()
 .writeEnd();
 jsonGenerator.flush();
}

System.out.println(stringWriter.toString());

Transform JSON with JsonPointer, JsonPatch and

JsonMergePatch

Since JSON-P 1.1, the specification offers a great way to query and transform
JSON structures using the following standardized JSON operations:

• JSON Pointer (official RFC)

• JSON Patch (official RFC)

Getting Started with Eclipse MicroProfile E-Book

JSON Processing (JSON-P) | 63

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6902

• JSON MergePatch (official RFC)

Identify a specific value with JSON Pointer

If your JSON object contains several sub-objects and arrays and you have to find
the value of a specific attribute, iterating over the whole object is cumbersome.
With JSON Pointer you can specify an expression and point to a specific attribute
and directly access it.

The expression is defined in the official RFC. Once you have a JSON pointer in
place, you can get the value, remove it, replace it, add a new and check for
existence with JSON-P and its JsonPointer class:

String jsonString = "{\"name\":\"duke\",\"age\":42,\"skills\":\[\"Java SE\", \"Java EE\"
]}";

JsonObject jsonObject = Json.createReader(new StringReader(jsonString)).readObject();

JsonPointer arrayElementPointer = Json.createPointer("/skills/1");
JsonPointer agePointer = Json.createPointer("/age");
JsonPointer namePointer = Json.createPointer("/name");
JsonPointer addressPointer = Json.createPointer("/address");
JsonPointer tagsPointer = Json.createPointer("/tags");

System.out.println("Get array element with pointer: " + arrayElementPointer.getValue
(jsonObject).toString());
System.out.println("Remove age with pointer: " + agePointer.remove(jsonObject));
System.out.println("Replace name with pointer: " + namePointer.replace(jsonObject, Json
.createValue("john")));
System.out.println("Check address with pointer: " + addressPointer.containsValue
(jsonObject));
System.out.println("Add tags with pointer: " + tagsPointer.add(jsonObject, Json
.createArrayBuilder().add("nice").build()));

Define a sequence of operations to apply using JSON Patch

Similar to the JSON Pointer in the example above, you can define a set of
operations to apply on a given JSON with JSON Patch. The possible operations to
apply to a JSON are defined in the official RFC. As an example, I’m modifying an
existing JSON with JsonPatch like the following:

String jsonString = "{\"name\":\"duke\",\"age\":42,\"skills\":\[\"Java SE\", \"Java EE\"
]}";

JsonObject jsonObject = Json.createReader(new StringReader(jsonString)).readObject();

JsonPatch patch = Json.createPatchBuilder()
 .add("/isRetired", false)
 .add("/skills/2", "Jakarta EE")
 .remove("/age")
 .replace("/name", "duke two")
 .build();

JsonObject patchedJson = patch.apply(jsonObject);
System.out.println("Patched JSON: " + patchedJson);

The patched JSON object looks like the following:

Getting Started with Eclipse MicroProfile E-Book

64 | JSON Processing (JSON-P)

https://tools.ietf.org/html/rfc7386
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6902

Patched JSON: {"name":"duke two","skills":["Java SE","Java EE","Jakarta
EE"],"isRetired":false}

Merge two JSON objects with JSON Merge Patch

If you want to merge a given JSON object with another JSON, you can make use
of the JSON Merge Patch. With this, you first have to define how the merge JSON
object looks like and can then apply it to a target JSON structure.

String jsonString = "{\"name\":\"duke\",\"age\":42,\"skills\":\[\"Java SE\", \"Java EE\"
]}";

JsonObject jsonObject = Json.createReader(new StringReader(jsonString)).readObject();

JsonObject merge = Json.createObjectBuilder()
 .add("name", "duke2")
 .add("isEmployee", true)
 .add("skills",
 Json.createArrayBuilder()
 .add("CSS")
 .add("HTML")
 .add("JavaScript")
 .build())
 .build();

JsonMergePatch mergePatch = Json.createMergePatch(merge);
JsonValue mergedJson = mergePatch.apply(jsonObject);
System.out.println("Merged JSON: " + mergedJson);

The merged JSON in this example looks like the following:

Merged JSON:
{"name":"duke2","age":42,"skills":["CSS","HTML","JavaScript"],"isEmployee":true}

For more information about the JSON Merge Patch, have a look at the official
RFC.

» For more hands-one experience with JSON-P, watch the corresponding video
course section of the Getting Started with Eclipse MicroProfile series.

Getting Started with Eclipse MicroProfile E-Book

JSON Processing (JSON-P) | 65

https://tools.ietf.org/html/rfc7386#section-2
https://tools.ietf.org/html/rfc7386#section-2
https://youtu.be/2H7z_MbWwDQ

Integration with Jakarta EE

Fortunately all major application server vendors (Open Liberty, Payara, WildFly,
TomEE) support and implement both Eclipse MicroProfile and Jakarta EE. Given
this fact, we can add MicroProfile to an existing Java/Jakarta EE application
without further configuration.

So you can either add missing parts like persistence to your MicroProfile
application with adding Jakarta EE or add the missing parts for a microservice
based architecture to your existing Jakarta EE application.

A minimal pom.xml for a Jakarta EE and MicroProfile project might look like the
following:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.your.company</groupId>
 <artifactId>mp-and-jakarta-ee</artifactId>
 <version>1.0.0</version>
 <packaging>war</packaging>

 <properties>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId>jakarta.platform</groupId>
 <artifactId>jakarta.jakartaee-api</artifactId>
 <version>8.0.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.eclipse.microprofile</groupId>
 <artifactId>microprofile</artifactId>
 <version>3.3</version>
 <type>pom</type>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

If you are looking for a simple way to bootstrap a Jakarta EE + MicroProfile
project, have a look at one of my Maven Archetypes here.

For a full application setup with a React frontend and PostgreSQL, I’m providing
you a project template here.

Getting Started with Eclipse MicroProfile E-Book

66 | Integration with Jakarta EE

https://rieckpil.de/bootstrap-a-jakarta-ee-8-maven-project-with-java-11-in-seconds/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book
https://rieckpil.de/jakarta-ee-and-microprofile-applications-with-react-and-postgresql/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

Further resources on Eclipse MicroProfile

Further resources can be found here:

• Official homepage of Eclipse MicroProfile

• Official blog of Eclipse MicroProfile

• YouTube channel of the Eclipse Foundation

• Project overview of Eclipse MicroProfile in general

• Eclipse MicroProfile Google Group to ask questions or get involved

• Umbrella GitHub repository

• Eclipse MicroProfile mailing list

• Official Wiki page

• Further tutorials on my blog

Getting Started with Eclipse MicroProfile E-Book

Further resources on Eclipse MicroProfile | 67

https://microprofile.io/
https://microprofile.io/blog/
https://www.youtube.com/user/EclipseFdn
https://projects.eclipse.org/projects/technology.microprofile
https://groups.google.com/forum/#!forum/microprofile
https://github.com/eclipse/microprofile
https://accounts.eclipse.org/mailing-list/microprofile-dev
https://wiki.eclipse.org/MicroProfile
https://rieckpil.de/category/microprofile/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

Changelog notes

Updates with Eclipse MicroProfile 3.3

• Rest Client specification update to version 1.4 (TCK improvements, CDI
usage in ClientHeadersFactory, and further small improvements)

• Config specification update to version 1.4 (fixes classloading issues, adding
new build-in converters, improvements to the Converter interface)

• Fault Tolerance specification update to version 2.1 (enrichment to
annotations with new attributes, relaxing requirements on Future and
CompletionStage implementation)

• Metrics specification update to 2.3 (introduction of @SimplyTimed, new
base metric derived from RESTful stats)

• Health specification update to 2.2 (API and TCK improvements, upgrade to
CDI version 2.0)

• Further release notes can be found on the MicroProfile blog

• Get the full specification document for this release here

Updates with Eclipse MicroProfile 3.2

• Correct backward compatibility for the Metrics specification (this reverts a
problematic change from Metrics 2.1 where Gauges were required to
return subclasses of java.lang.Number)

• Get a more detailed changelog for this release here

Updates with Eclipse MicroProfile 3.1

• Metrics specification update to version 2.1 (clarification for the Gauge
metric, .reusable() method of the MetadataBuilder now takes a
boolean value as input, TCK improvements)

• Health Check specification update to version 2.1 (default procedures of the
vendor can be disabled, Javadoc improvements, updates to the test setup)

• Get a detailed review of what changed with this release here

Getting Started with Eclipse MicroProfile E-Book

68 | Changelog notes

https://microprofile.io/2020/02/18/eclipse-microprofile-3-3-is-now-available/
http://download.eclipse.org/microprofile/microprofile-3.3/microprofile-spec-3.3.html
https://microprofile.io/2019/11/11/eclipse-microprofile-3-2-is-now-available/
https://rieckpil.de/review-whats-new-in-microprofile-3-1/?utm_source=microprofile-book&utm_medium=print&utm_campaign=free-microprofile-book

	Getting Started with Eclipse MicroProfile E-Book
	Table of Contents
	Getting Started with Eclipse MicroProfile
	Introduction to Eclipse MicroProfile
	MicroProfile Config
	MicroProfile Metrics
	MicroProfile OpenAPI
	MicroProfile OpenTracing
	MicroProfile Fault Tolerance
	MicroProfile Rest Client
	MicroProfile Health
	MicroProfile JWT Auth
	Contexts and Dependency Injection (CDI)
	Jakarta RESTful Web Services (JAX-RS)
	JSON Binding (JSON-B)
	JSON Processing (JSON-P)
	Integration with Jakarta EE
	Further resources on Eclipse MicroProfile
	Changelog notes

